scholarly journals Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingnan Huang ◽  
Frauke Swieringa ◽  
Fiorella A. Solari ◽  
Isabella Provenzale ◽  
Luigi Grassi ◽  
...  

AbstractNovel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease.

2016 ◽  
Author(s):  
Morgan N. Price ◽  
Kelly M. Wetmore ◽  
R. Jordan Waters ◽  
Mark Callaghan ◽  
Jayashree Ray ◽  
...  

SummaryThe function of nearly half of all protein-coding genes identified in bacterial genomes remains unknown. To systematically explore the functions of these proteins, we generated saturated transposon mutant libraries from 25 diverse bacteria and we assayed mutant phenotypes across hundreds of distinct conditions. From 3,903 genome-wide mutant fitness assays, we obtained 14.9 million gene phenotype measurements and we identified a mutant phenotype for 8,487 proteins with previously unknown functions. The majority of these hypothetical proteins (57%) had phenotypes that were either specific to a few conditions or were similar to that of another gene, thus enabling us to make informed predictions of protein function. For 1,914 of these hypothetical proteins, the functional associations are conserved across related proteins from different bacteria, which confirms that these associations are genuine. This comprehensive catalogue of experimentally-annotated protein functions also enables the targeted exploration of specific biological processes. For example, sensitivity to a DNA-damaging agent revealed 28 known families of DNA repair proteins and 11 putative novel families. Across all sequenced bacteria, 14% of proteins that lack detailed annotations have an ortholog with a functional association in our data set. Our study demonstrates the utility and scalability of high-throughput genetics for large-scale annotation of bacterial proteins and provides a vast compendium of experimentally-determined protein functions across diverse bacteria.


Author(s):  
Ana López-Varea ◽  
Cristina M Ostalé ◽  
Patricia Vega-Cuesta ◽  
Ana Ruiz-Gómez ◽  
María F Organista ◽  
...  

Abstract We have screened a collection of UAS-RNAi lines targeting 10920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knock-down causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist in changes in wing size, vein differentiation and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function, and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecting wing formation and the biological processes regulated by them.


2020 ◽  
Author(s):  
Fritz J. Sedlazeck ◽  
Bing Yu ◽  
Adam J. Mansfield ◽  
Han Chen ◽  
Olga Krasheninina ◽  
...  

AbstractGenome sequencing at population scale provides unprecedented access to the genetic foundations of human phenotypic diversity, but genotype-phenotype association analyses limited to small variants have failed to comprehensively characterize the genetic architecture of human health and disease because they ignore structural variants (SVs) known to contribute to phenotypic variation and pathogenic conditions1–3. Here we demonstrate the significance of SVs when assessing genotype-phenotype associations and the importance of ethnic diversity in study design by analyzing SVs across 19,652 individuals and the translational impact on 4,156 aptamerbased proteomic measurements across 4,021 multi-ethnic samples. The majority of 304,533 SVs detected are rare, although we identified 2,336 protein-coding genes impacted by common SVs.\We identified 64 significant SV-protein associations that comprise 36 cis- and 28 trans-acting relationships, and 21 distinct SV regions overlapped with genome-wide association study loci. These findings represent a more comprehensive mapping of regulatory and translational endophenotypes underlying health and disease.


2020 ◽  
Vol 36 (9) ◽  
pp. 2936-2937 ◽  
Author(s):  
Gareth Peat ◽  
William Jones ◽  
Michael Nuhn ◽  
José Carlos Marugán ◽  
William Newell ◽  
...  

Abstract Motivation Genome-wide association studies (GWAS) are a powerful method to detect even weak associations between variants and phenotypes; however, many of the identified associated variants are in non-coding regions, and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding genes, therefore, requires crossing the genetics results with functional data. Results We present a novel data integration pipeline that analyses GWAS results in the light of experimental epigenetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data resource. Availability and implementation The analysis code is available at www.github.com/Ensembl/postgap and the interactive data browser at postgwas.opentargets.io.


2021 ◽  
Vol 22 (11) ◽  
pp. 6091
Author(s):  
Kristina Daniunaite ◽  
Arnas Bakavicius ◽  
Kristina Zukauskaite ◽  
Ieva Rauluseviciute ◽  
Juozas Rimantas Lazutka ◽  
...  

The molecular diversity of prostate cancer (PCa) has been demonstrated by recent genome-wide studies, proposing a significant number of different molecular markers. However, only a few of them have been transferred into clinical practice so far. The present study aimed to identify and validate novel DNA methylation biomarkers for PCa diagnosis and prognosis. Microarray-based methylome data of well-characterized cancerous and noncancerous prostate tissue (NPT) pairs was used for the initial screening. Ten protein-coding genes were selected for validation in a set of 151 PCa, 51 NPT, as well as 17 benign prostatic hyperplasia samples. The Prostate Cancer Dataset (PRAD) of The Cancer Genome Atlas (TCGA) was utilized for independent validation of our findings. Methylation frequencies of ADAMTS12, CCDC181, FILIP1L, NAALAD2, PRKCB, and ZMIZ1 were up to 91% in our study. PCa specific methylation of ADAMTS12, CCDC181, NAALAD2, and PRKCB was demonstrated by qualitative and quantitative means (all p < 0.05). In agreement with PRAD, promoter methylation of these four genes was associated with the transcript down-regulation in the Lithuanian cohort (all p < 0.05). Methylation of ADAMTS12, NAALAD2, and PRKCB was independently predictive for biochemical disease recurrence, while NAALAD2 and PRKCB increased the prognostic power of multivariate models (all p < 0.01). The present study identified methylation of ADAMTS12, NAALAD2, and PRKCB as novel diagnostic and prognostic PCa biomarkers that might guide treatment decisions in clinical practice.


2019 ◽  
Vol 20 (13) ◽  
pp. 3315 ◽  
Author(s):  
Simona Cantarella ◽  
Davide Carnevali ◽  
Marco Morselli ◽  
Anastasia Conti ◽  
Matteo Pellegrini ◽  
...  

Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 643
Author(s):  
Thibaud Kuca ◽  
Brandy M. Marron ◽  
Joana G. P. Jacinto ◽  
Julia M. Paris ◽  
Christian Gerspach ◽  
...  

Genodermatosis such as hair disorders mostly follow a monogenic mode of inheritance. Congenital hypotrichosis (HY) belong to this group of disorders and is characterized by abnormally reduced hair since birth. The purpose of this study was to characterize the clinical phenotype of a breed-specific non-syndromic form of HY in Belted Galloway cattle and to identify the causative genetic variant for this recessive disorder. An affected calf born in Switzerland presented with multiple small to large areas of alopecia on the limbs and on the dorsal part of the head, neck, and back. A genome-wide association study using Swiss and US Belted Galloway cattle encompassing 12 cases and 61 controls revealed an association signal on chromosome 29. Homozygosity mapping in a subset of cases refined the HY locus to a 1.5 Mb critical interval and subsequent Sanger sequencing of protein-coding exons of positional candidate genes revealed a stop gain variant in the HEPHL1 gene that encodes a multi-copper ferroxidase protein so-called hephaestin like 1 (c.1684A>T; p.Lys562*). A perfect concordance between the homozygous presence of this most likely pathogenic loss-of-function variant and the HY phenotype was found. Genotyping of more than 700 purebred Swiss and US Belted Galloway cattle showed the global spread of the mutation. This study provides a molecular test that will permit the avoidance of risk matings by systematic genotyping of relevant breeding animals. This rare recessive HEPHL1-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002230-9913).


2009 ◽  
Vol 83 (13) ◽  
pp. 6457-6463 ◽  
Author(s):  
Ziying Han ◽  
Carolina Alves ◽  
Severin Gudima ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) encodes one protein, hepatitis delta antigen (δAg), a 195-amino-acid RNA binding protein essential for the accumulation of HDV RNA-directed RNA transcripts. It has been accepted that δAg localizes predominantly to the nucleolus in the absence of HDV genome replication while in the presence of replication, δAg facilitates HDV RNA transport to the nucleoplasm and helps redirect host RNA polymerase II (Pol II) to achieve transcription and accumulation of processed HDV RNA species. This study used immunostaining and confocal microscopy to evaluate factors controlling the localization of δAg in the presence and absence of replicating and nonreplicating HDV RNAs. When δAg was expressed in the absence of full-length HDV RNAs, it colocalized with nucleolin, a predominant nucleolar protein. With time, or more quickly after induced cell stress, there was a redistribution of both δAg and nucleolin to the nucleoplasm. Following expression of nonreplicating HDV RNAs, δAg moved to the nucleoplasm, but nucleolin was unchanged. When δAg was expressed along with replicating HDV RNA, it was found predominantly in the nucleoplasm along with Pol II. This localization was insensitive to inhibitors of HDV replication, suggesting that the majority of δAg in the nucleoplasm reflects ribonucleoprotein accumulation rather than ongoing transcription. An additional approach was to reevaluate several forms of δAg altered at specific locations considered to be essential for protein function. These studies provide evidence that δAg does not interact directly with either Pol II or nucleolin and that forms of δAg which support replication are also capable of prior nucleolar transit.


Sign in / Sign up

Export Citation Format

Share Document