scholarly journals Maternal high-fat diet during pregnancy with concurrent phthalate exposure leads to abnormal placentation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Athilakshmi Kannan ◽  
Juanmahel Davila ◽  
Liying Gao ◽  
Saniya Rattan ◽  
Jodi A. Flaws ◽  
...  

AbstractDi(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical commonly used for its plasticizing capabilities. Because of the extensive production and use of DEHP, humans are exposed to this chemical daily. Diet is a significant exposure pathway and fatty food contain the highest level of phthalates. The impact on pregnancy following DEHP exposure and the associated interaction of high fat (HF) diet remains unknown. Here we report that exposure of pregnant mice to an environmentally relevant level of DEHP did not affect pregnancy. In contrast, mice fed a HF diet during gestation and exposed to the same level of DEHP display marked impairment in placental development, resulting in poor pregnancy outcomes. Our study further reveals that DEHP exposure combined with a HF diet interfere with the signaling pathway controlled by nuclear receptor PPARγ to adversely affect differentiation of trophoblast cells, leading to compromised vascularization and glucose transport in the placenta. Collectively, these findings demonstrate that maternal diet during pregnancy is a critical factor that determines whether exposure to an environmental toxicant results in impaired placental and fetal development, causing intrauterine growth restriction, fetal morbidity, and mortality.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 68-68
Author(s):  
Kjersti M Aagaard

Abstract Human microbial communities are characterized by their metagenomic and metabolic diversity, which varies by distinct body sites and influences human physiology. We are only beginning to characterize the complex set of interactions which alters both community membership and function in early development. With respect to the potential source of microbiota at birth, it has been generally assumed that the majority of seeding microbes originate from the maternal lower genital tract, with microbiota ascending into the otherwise sterile intrauterine. However, we and subsequently others have recently demonstrated that (1) the vaginal and gut microbiome communities are distinctly structured in pregnancy, and (2) the intrauterine environment and the fetus is in fact not sterile, but rather harbors a low-abundance microbiome which varies by several measured exposures, and (3) the maternal diet during both gestation and lactation, and notably a high fat diet, has a particularly strong impact on the developing and early in life microbial community structure. We have taken two dynamic approaches to answering these questions in our studies. First, we use large and robust longitudinal cohorts of maternal-infant dyads collected across gestation and into infancy to gain deeper insight into both source and sink of the early developmental microbiome and its role on determining length of gestation. Second, we utilize our well established primate models of maternal high fat dietary exposure, both in the absence and presence of maternal obesity, to determine the impact of maternal diet on both the microbiome and the resultant offspring metabolic phenotype.


2007 ◽  
Vol 293 (3) ◽  
pp. R1056-R1062 ◽  
Author(s):  
Jacqueline Férézou-Viala ◽  
Anne-France Roy ◽  
Colette Sérougne ◽  
Daniel Gripois ◽  
Michel Parquet ◽  
...  

Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (−12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.


2006 ◽  
Vol 290 (3) ◽  
pp. R844-R851 ◽  
Author(s):  
Leonhard Schäffer ◽  
Johannes Vogel ◽  
Christian Breymann ◽  
Max Gassmann ◽  
Hugo H. Marti

Local tissue oxygenation profoundly influences placental development. To elucidate the impact of hypoxia on cellular and molecular adaptation in vivo, pregnant mice at embryonic days 7.5–11.5 were exposed to reduced environmental oxygen (6–7% O2) for various periods of time. Hypoxia-inducible factor (HIF)-1α mRNA was highly expressed in the placenta, whereas HIF-2α was predominantly found in the decidua, indicating that HIF-1 is a relevant oxygen-dependent factor involved in placental development. During severe hypoxia, HIF-1α protein was strongly induced in the periphery but, however, not in the labyrinth layer of the placenta. Accordingly, no indication for tissue hypoxia in this central area was detected with 2-(2-nitro-1 H-imidazol-1-yl)- N-(2,2,3,3,3-pentafluoropropyl)acetamide staining and VEGF expression as hypoxic markers. The absence of significant tissue hypoxia was reflected by preserved placental architecture and trophoblast differentiation. In the search for mechanisms preventing local hypoxia, we found upregulation of endothelial nitric oxide synthase (NOS) expression in the labyrinth layer. Inhibition of NOS activity by Nω-nitro-l-arginine methyl ester application resulted in ubiquitous placental tissue hypoxia. Our results show that placental oxygenation is preserved even during severe systemic hypoxia and imply that NOS-mediated mechanisms are involved to protect the placenta from maternal hypoxia.


2021 ◽  
Vol 8 ◽  
Author(s):  
Scott M. Bolam ◽  
Vidit V. Satokar ◽  
Subhajit Konar ◽  
Brendan Coleman ◽  
Andrew Paul Monk ◽  
...  

Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon.Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis.Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes.Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.


2011 ◽  
Vol 107 (9) ◽  
pp. 1245-1248 ◽  
Author(s):  
Nicolas Desbuards ◽  
Pascal Gourbeyre ◽  
Vianney Haure-Mirande ◽  
Dominique Darmaun ◽  
Martine Champ ◽  
...  

To assess the impact of prebiotic supplementation during gestation and fetal and early neonatal life, gestating BALB/cj dam mice were fed either a control or a prebiotic (galacto-oligosaccharides–inulin, 9:1 ratio)-enriched diet throughout pregnancy and lactation, and allowed to nurse their pups until weaning. At the time of weaning, male offspring mice were separated from their mothers, weaned to the same solid diet as their dam and their growth was monitored until killed 48 d after weaning. Prebiotic treatment affected neither the body-weight gain nor the food intake of pregnant mice. In contrast, at the time of weaning, pups that had been nursed by prebiotic-fed dams had a higher body weight (11·0 (se 1·2) g) than pups born from control dams (9·8 (se 0·9) g). At 48 d after weaning, significantly higher values were observed for colon length and muscle mass in the offspring of prebiotic-fed dams (1·2 (se 0·1) cm/cm and 5·7 (se 1·8) mg/g, respectively), compared with control offspring (1·1 (se 0·1) cm/cm and 2·9 (se 0·9) mg/g, respectively), without any difference in spleen and stomach weight, or serum leptin concentration. The present preliminary study suggests that altering the fibre content of the maternal diet during both pregnancy and lactation enhances offspring growth, through an effect on intestinal and muscle mass rather than fat mass accretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Delphine Rousseau-Ralliard ◽  
Marie-Christine Aubrière ◽  
Nathalie Daniel ◽  
Michèle Dahirel ◽  
Gwendoline Morin ◽  
...  

Context and Aim: Lipid overnutrition in female rabbits, from prepuberty, leads to impaired metabolism (dyslipidemia and increased adiposity) and follicular atresia, and, when continued during gestation, affects offspring phenotype with intrauterine growth retardation (IUGR) and leads to placental and lipid metabolism abnormalities. Growth retardation is already observed in embryo stage, indicating a possible implication of periconceptional exposure. The objective of this study was to discriminate the effects of preconception and gestational exposures on feto-placental development.Materials and Methods: Rabbit 1-day zygotes were collected from female donors under control (CD) or high-fat-high-cholesterol (HD) diet and surgically transferred to the left and right uterus, respectively, of each H (n = 6) or C (n = 7) synchronized recipients. Close to term, four combinations, CC (n = 10), CH (n = 13), HC (n = 13), and HH (n = 6), of feto-placental units were collected, for biometry analyses. Fatty acid (FA) profiles were determined in placental labyrinth, decidua, fetal plasma, and fetal liver by gas chromatography and explored further by principal component analysis (PCA). Candidate gene expression was also analyzed by RT-qPCR in the placenta and fetal liver. Data were analyzed by Kruskal–Wallis followed by Dunn’s pairwise comparison test. Combinations of different data sets were combined and explored by multifactorial analysis (MFA).Results: Compared to controls, HH fetuses were hypotrophic with reduced placental efficiency and altered organogenesis, CH presented heavier placenta but less efficient, whereas HC presented a normal biometry. However, the MFA resulted in a good separation of the four groups, discriminating the effects of each period of exposure. HD during gestation led to reduced gene expression (nutrient transport and metabolism) and big changes in FA profiles in both tissues with increased membrane linoleic acid, lipid storage, and polyunsaturated-to-saturated FA ratios. Pre-conception exposure had a major effect on fetal biometry and organogenesis in HH, with specific changes in FA profiles (increased MUFAs and decreased LCPUFAs).Conclusion: Embryo origin left traces in end-gestation feto-placental unit; however, maternal diet during gestation played a major role, either negative (HD) or positive (control). Thus, an H embryo developed favorably when transferred to a C recipient (HC) with normal biometry at term, despite disturbed and altered FA profiles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luís Crisóstomo ◽  
Ivana Jarak ◽  
Luís P. Rato ◽  
João F. Raposo ◽  
Rachel L. Batterham ◽  
...  

AbstractThe consumption of energy-dense diets has contributed to an increase in the prevalence of obesity and its comorbidities worldwide. The adoption of unhealthy feeding habits often occurs at early age, prompting the early onset of metabolic disease with unknown consequences for reproductive function later in life. Recently, evidence has emerged regarding the intergenerational and transgenerational effects of high-fat diets (HFD) on sperm parameters and testicular metabolism. Hereby, we study the impact of high-fat feeding male mice (F0) on the testicular metabolome and function of their sons (F1) and grandsons (F2). Testicular content of metabolites related to insulin resistance, cell membrane remodeling, nutritional support and antioxidative stress (leucine, acetate, glycine, glutamine, inosine) were altered in sons and grandsons of mice fed with HFD, comparing to descendants of chow-fed mice. Sperm counts were lower in the grandsons of mice fed with HFD, even if transient. Sperm quality was correlated to testicular metabolite content in all generations. Principal Component Analysis of sperm parameters and testicular metabolites revealed an HFD-related phenotype, especially in the diet-challenged generation and their grandsons. Ancestral HFD, even if transient, causes transgenerational “inherited metabolic memory” in the testicular tissue, characterized by changes in testicular metabolome and function.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1050
Author(s):  
Sylwia Cyboran-Mikołajczyk ◽  
Robert Pasławski ◽  
Urszula Pasławska ◽  
Kacper Nowak ◽  
Michał Płóciennik ◽  
...  

Long-term high fat-carbohydrates diet (HF-CD) contributes to the formation of irreversible changes in the organism that lead to the emergence of civilization diseases. In this study, the impact of three-month high-fat diet on the physical properties of erythrocytes (RBCs) was studied. Furthermore, the biological activity of Cistus incanus L. extracts, plant known with high pro-health potential, in relation to normal and HF-CD RBCs, was determined. Obtained results have shown that, applied HF-CD modified shape, membrane potential and osmotic resistance of erythrocytes causing changes in membrane lipid composition and the distribution of lipids. The impact of HF-CD on physical properties of RBCs along with atherosclerotic lesions of the artery was visible, despite the lack of statistically significant changes in blood morphology and plasma lipid profile. This suggests that erythrocytes may be good markers of obesity-related diseases. The studies of biological activity of Cistus incanus L. extracts have demonstrated that they may ameliorate the effect of HF-CD on erythrocytes through the membrane-modifying and antioxidant activity.


2021 ◽  
Author(s):  
Qiao Jie ◽  
Yue-Zhong Ren ◽  
Yi-wen Wu

High-fat diets(HFD)are defined as lipids accounting for exceeded 30% of total energy in-take, and current research is mostly 45% and 60%. With a view of the tendency that patients who...


Author(s):  
Pablo A. Scacchi Bernasconi ◽  
Nancy P. Cardoso ◽  
Roxana Reynoso ◽  
Pablo Scacchi ◽  
Daniel P. Cardinali

AbstractCombinations of fructose- and fat-rich diets in experimental animals can model the human metabolic syndrome (MS). In rats, the increase in blood pressure (BP) after diet manipulation is sex related and highly dependent on testosterone secretion. However, the extent of the impact of diet on rodent hypophysial-testicular axis remains undefined. In the present study, rats drinking a 10% fructose solution or fed a high-fat (35%) diet for 10 weeks had higher plasma levels of luteinizing hormone (LH) and lower plasma levels of testosterone, without significant changes in circulating follicle-stimulating hormone or the weight of most reproductive organs. Diet manipulation brought about a significant increase in body weight, systolic BP, area under the curve (AUC) of glycemia after an intraperitoneal glucose tolerance test (IPGTT), and plasma low-density lipoprotein cholesterol, cholesterol, triglycerides, and uric acid levels. The concomitant administration of melatonin (25 μg/mL of drinking water) normalized the abnormally high LH levels but did not affect the inhibited testosterone secretion found in fructose- or high-fat-fed rats. Rather, melatonin per se inhibited testosterone secretion. Melatonin significantly blunted the body weight and systolic BP increase, the increase in the AUC of glycemia after an IPGTT, and the changes in circulating lipid profile and uric acid found in both MS models. The results are compatible with a primary inhibition of testicular function in diet-induced MS in rats and with the partial effectiveness of melatonin to counteract the metabolic but not the testicular sequelae of rodent MS.


Sign in / Sign up

Export Citation Format

Share Document