scholarly journals Pentahydroxy flavonoid isolated from Madhuca indica ameliorated adjuvant-induced arthritis via modulation of inflammatory pathways

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongliang Tang ◽  
Daotao Xie ◽  
Wenqing Gong ◽  
Hongtao Wu ◽  
Yi Qiang

AbstractRheumatoid arthritis (RA) is an autoimmune disease associated with advanced joint dysfunction. Madhuca indica J. F. Gmel, from the family Sapotaceae, is an Indian medicinal plant reported to have an array of pharmacological properties. The aim of present investigation was to determine the anti-arthritic potential of an isolated phytoconstituent from methanolic leaf extract of Madhuca indica (MI-ALC) against FCA-induced experimental arthritis. Polyarthritis was induced in female rats (strain: Wistar) via an intradermal injection of FCA (0.1 mL) into the tail. Polyarthritis developed after 32 days of FCA administration. Then rats were treated orally with an isolated phytoconstituent from MI-ALC at doses of 5, 10, and 20 mg/kg. Findings suggested that High-Performance Thin-Layer Chromatography, Fourier-Transform Infrared Spectroscopy, and Liquid Chromatography-Mass Spectrometry spectral analyses of the phytoconstituent isolated from MI-ALC confirmed the structure as 3,5,7,3′,4′-Pentahydroxy flavone (i.e., QTN). Treatment with QTN (10 and 20 mg/kg) showed significant (p < 0.05) inhibition of increased joint diameter, paw volume, paw withdrawal threshold, and latency. The elevated synovial oxidative stress (Superoxide dismutase, reduced glutathione, and malondialdehyde) and protein levels of Tumor necrosis factor-α (TNF-α) and Interleukin (ILs) were markedly (p < 0.05) reduced by QTN. It also effectively (p < 0.05) ameliorated cyclooxygenase-2 (COX-2), Nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-kβ) and its inhibitor-α (Ikβα), and ATP-activated P2 purinergic receptors (P2X7) protein expressions as determined by western blot analysis. In conclusion, QTN ameliorates FCA-induced hyperalgesia through modulation of elevated inflammatory release (NF-kβ, Ikβα, P2X7, and COX-2), oxido-nitrosative stress, and pro-inflammatory cytokines (ILs and TNF-α) in experimental rats.

2021 ◽  
Author(s):  
Yongliang Tang ◽  
Daotao Xie ◽  
Wenqing Gong ◽  
Hongtao Wu ◽  
Yi Qiang

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with progressive joint disability. Madhuca indica J. F. Gmel (family Sapotaceae) is an Indian medicinal plant reported to have an array of pharmacological properties. Objective To evaluate the anti-arthritic activity of isolated phytoconstituent from methanolic extract of Madhuca indica Leaves (MI-ALC) and its possible mechanism of action in FCA induced experimental arthritis. Materials and methods Polyarthritis was induced in female Wistar rats by intradermal administration of FCA (0.1 ml) into the tail. Polyarthritis was allowed to develop for the next 32 days. Then rats were treated with isolated phytoconstituent from MI-ALC (5, 10, and 20 mg/kg, p.o.) Results HPTLC, FTIR, and LC-MS spectral analysis of phytoconstituent isolated from MI-ALC confirmed the structure as 3,5,7,3′,4′- Pentahydroxy flavone (i.e., QTN). Treatment with QTN (10 and 20 mg/kg) showed significant inhibition (p < 0.05) in FCA-induced increased paw volume, joint diameter, paw withdrawal threshold, and latency. The elevated synovial oxido-nitrosative stress and protein levels of TNF-α, IL-1β, and IL-6 were significantly reduced (p < 0.05)by QTN. Western blot analysis revealed QNT significantly ameliorated (p < 0.05) up-regulated NF-kβ, Ikβα, COX-2, and P2X7 protein expressions. Conclusion QTN ameliorates FCA-induced hyperalgesia via inhibition of elevated oxido-nitrosative stress, inflammatory mediators (NF-kβ, Ikβα, COX-2, and P2X7), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in experimental rats.


2021 ◽  
Author(s):  
Yongliang Tang ◽  
Daotao Xie ◽  
Wenqing Gong ◽  
Hongtao Wu ◽  
Yi Qiang

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with progressive joint disability. Madhuca indica J. F. Gmel (family Sapotaceae) is an Indian medicinal plant reported to have an array of pharmacological properties.Objective To evaluate the anti-arthritic activity of isolated phytoconstituent from methanolic extract of Madhuca indica Leaves (MI-ALC) and its possible mechanism of action in FCA induced experimental arthritis.Materials and methods Polyarthritis was induced in female Wistar rats by intradermal administration of FCA (0.1 ml) into the tail. Polyarthritis was allowed to develop for the next 32 days. Then rats were treated with isolated phytoconstituent from MI-ALC (5, 10, and 20 mg/kg, p.o.)Results HPTLC, FTIR, and LC-MS spectral analysis of phytoconstituent isolated from MI-ALC confirmed the structure as 3,5,7,3′,4′- Pentahydroxy flavone (i.e., QTN). Treatment with QTN (10 and 20 mg/kg) showed significant inhibition (p < 0.05) in FCA-induced increased paw volume, joint diameter, paw withdrawal threshold, and latency. The elevated synovial oxido-nitrosative stress and protein levels of TNF-α, IL-1β, and IL-6 were significantly reduced (p < 0.05)by QTN. Western blot analysis revealed QNT significantly ameliorated (p < 0.05) up-regulated NF-kβ, Ikβα, COX-2, and P2X7 protein expressions.Conclusion QTN ameliorates FCA-induced hyperalgesia via inhibition of elevated oxido-nitrosative stress, inflammatory mediators (NF-kβ, Ikβα, COX-2, and P2X7), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in experimental rats.


2005 ◽  
Vol 288 (1) ◽  
pp. G32-G38 ◽  
Author(s):  
Jiing Chyuan Luo ◽  
Vivian Yvonne Shin ◽  
Ying Hua Yang ◽  
William Ka Kei Wu ◽  
Yi Ni Ye ◽  
...  

TNF-α is a cytokine produced during gastric mucosal injury. We examined whether TNF-α could promote mucosal repair by stimulation of epithelial cell proliferation and explored further the underlying mechanisms in a rat gastric mucosal epithelial cell line (RGM-1). TNF-α treatment (1–10 ng/ml) for 12 or 24 h significantly increased cell proliferation but did not induce apoptosis in RGM-1 cells. TNF-α treatment significantly increased cytosolic phospholipase A2 and cyclooxygenase-2 (COX-2) protein expression and PGE2 level but did not affect the protein levels of EGF, basic fibroblast growth factor, and COX-1 in RGM-1 cells. The mRNA of TNF receptor (TNF-R) 2 but not of TNF-R1 was also increased. Dexamethasone dose dependently inhibited the stimulatory effect of TNF-α on cell proliferation, which was associated with a significant decrease in cellular COX-2 expression and PGE2 level. A selective COX-2 inhibitor 3-(3-fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-5,5-dimethyl-5H-furan-2-one (DFU) by itself had no effect on basal cell proliferation but significantly reduced the stimulatory effect of TNF-α on RMG-1 cells. Combination of dexamethasone and DFU did not produce an additive effect. PGE2 significantly reversed the depressive action of dexamethasone on cell proliferation. These results suggest that TNF-α plays a regulatory role in epithelial cell repair in the gastric mucosa via the TNF-α receptor and activation of the arachidonic acid/PG pathway.


2011 ◽  
Vol 39 (05) ◽  
pp. 943-956 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Wen-Huang Peng ◽  
Tai-Hui Chiu ◽  
Shang-Chih Lai ◽  
Chao-Ying Lee

The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract.


2001 ◽  
Vol 281 (6) ◽  
pp. G1348-G1356 ◽  
Author(s):  
Amin A. Nanji ◽  
Kalle Jokelainen ◽  
Maryam Fotouhinia ◽  
Amir Rahemtulla ◽  
Peter Thomas ◽  
...  

Alcoholic liver injury is more severe and rapidly developing in women than men. To evaluate the reason(s) for these gender-related differences, we determined whether pathogenic mechanisms important in alcoholic liver injury in male rats were further upregulated in female rats. Male and age-matched female rats (7/group) were fed ethanol and a diet containing fish oil for 4 wk by intragastric infusion. Dextrose isocalorically replaced ethanol in control rats. We analyzed liver histopathology, lipid peroxidation, cytochrome P-450 (CYP)2E1 activity, nonheme iron, endotoxin, nuclear factor-κB (NF-κB) activation, and mRNA levels of cyclooxygenase-1 (COX-1) and COX-2, tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). Alcohol-induced liver injury was more severe in female vs. male rats. Female rats had higher endotoxin, lipid peroxidation, and nonheme iron levels and increased NF-κB activation and upregulation of the chemokines MCP-1 and MIP-2. CYP2E1 activity and TNF-α and COX-2 levels were similar in male and female rats. Remarkably, female rats fed fish oil and dextrose also showed necrosis and inflammation. Our findings in ethanol-fed rats suggest that increased endotoxemia and lipid peroxidation in females stimulate NF-κB activation and chemokine production, enhancing liver injury. TNF-α and COX-2 upregulation are probably important in causing liver injury but do not explain gender-related differences.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Shun-Guang Wei ◽  
Yang Yu ◽  
Robert B Felder

Introduction: Accumulating evidence indicates that sex differences exist in the clinical and experimental outcomes of various cardiovascular diseases. In addition to its protective effect on renin-angiotensin system activity, estrogen has an anti-inflammatory influence. The central actions of pro-inflammatory cytokines (PICs) contribute significantly to cardiovascular and autonomic dysfunction in hypertension and heart failure. In male adult rat, central administration of PICs induces substantial increases in blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA), and blocking PICs reduces sympathetic excitation in experimental models of hypertension and heart failure. Whether PICs have similar central sympatho-excitatory effects in the female rat remains unknown. Hypothesis: We hypothesized that female rats may be protected from the central cardiovascular and autonomic effects of PICs. Methods: Urethane anesthetized male and female Sprague Dawley rats (10-12 weeks) underwent an intracerebrovascular (ICV) injection of the prototypical PIC tumor necrosis factor-α (TNF-α, 100 ng). BP (mmHg), HR (beats/min) and RSNA (% change) responses were continuously recorded for 4-5 hours. Results: In male rats (n=6), ICV TNF-α induced a dramatic and long-lasting increase (*p<0.001 vs. baseline) in BP (23.1 ± 2.5*), HR (82 ± 8*) and RSNA (109.5 ± 4.3 %*), that began within 20-30 mins and peaked at 90-120 mins after ICV injection. In the female rats (n=6), ICV TNF-α elicited significantly (p<0.05) smaller increases (*p<0.001 vs. baseline) in BP (14.8 ± 1.8*), HR (55 ± 6*) and RSNA (78.5 ± 6.3*), compared with the male rats. Conclusion: These data demonstrate a sex difference in the cardiovascular and sympathetic responses to centrally administered PICs. Whether the observed differences can be explained by an estrogen effect on TNF-α signaling per se or by an estrogen effect on TNF-α-induced renin-angiotensin activity remains to be determined. However, a reduced response of female rats to central inflammation may be an important contributor to sex differences in pathophysiology of hypertension and heart failure.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Yiling Cao ◽  
Baojian Xue ◽  
Yang Yu ◽  
Alan K Johnson ◽  
Shun-Guang Wei

Inflammation plays an important role in the pathophysiology of cardiovascular dysfunction and neurohumoral excitation in heart failure and hypertension. Growing evidence has demonstrated significant sex differences in the inflammatory response and immune processes, with estrogen exerting an anti-inflammatory effects and testosterone potentially having pro-inflammatory influence. We previously reported that central administration of tumor necrosis factor-α (TNF-α) elicited different effects on blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in male and female rats. Whether the sex steroids estrogen and testosterone contribute to the observed differences in TNF-α-induced hemodynamic and sympathetic responses remains unknown. We hypothesized that estrogen protects against TNF-α-induced sympathetic excitation and pressor responses while testosterone enhances these excitatory outcomes in response to TNF-α. Female or male Sprague Dawley rats (10-12 weeks) anesthetized with ketamine plus xylazine underwent bilateral ovariectomy or castration, respectively, 2 weeks prior to study. Sham-operated (Sham) female or male animals served as controls. TNF-α (100 ng) was administered intracerebroventricularly (ICV). BP (mmHg), HR (bpm) and RSNA (% change) were recorded in urethane anesthetized rats. In ovariectomized female rats (n=6), ICV TNF-α induced significantly (*p<0.05 vs. Sham) larger increases in BP (19.3 ± 1.4* vs. 12.8 ± 1.2 ), HR (76.3 ± 4.8* vs. 51.5 ± 4.3) and RSNA (104.8 ± 6.9* vs. 72.4 ± 5.1), compared with Sham-female rats, that began within 20-30 mins and peaked at 90-120 mins after ICV injection. In castrated male rats (n=6), ICV TNF-α-elicited significantly smaller increases in BP (15.2 ± 1.3* vs. 21.8 ± 1.6), HR (57.7 ± 4.2* vs. 82.6 ± 4.1) and RSNA (72.6 ± 4.3* vs. 110.3 ± 4.7), compared with Sham-male animals. These data indicate a distinct role of sex hormones estrogen and testosterone in central inflammation-driven cardiovascular and sympathetic activation and suggest a protective effect of estrogen and a harmful effect of testosterone in the development of hypertension and heart failure.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 273-279 ◽  
Author(s):  
Chang-Suk Kong ◽  
Jung Im Lee ◽  
Fatih Karadeniz ◽  
Hojun Kim ◽  
Youngwan Seo

Abstract The Arctic flora hosts a limited number of species due to its extreme environmental conditions which also yield novel and unique secondary metabolites from withstanding plants. Considering a lack of research on bioactivity potential of Arctic flora, Ranunculus hyperboreus, an Arctic plant, was studied for its anti-inflammatory potential as a part of ongoing research on discovering novel natural bioactive products. Solvent-based fractions (H2O, n-BuOH, 85% aq. MeOH, n-hexane) from R. hyperboreus extract were observed to decrease the elevated nitrate amount during the inflammatory response of lipopolysaccharide-induced mouse macrophage RAW264.7 cells. To some extent, treatment with fractions was able to regulate the expression and protein levels of inflammation-related enzymes, iNOS and COX-2, and pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. The most active fractions, H2O and 85% aq. MeOH, were suggested to exert their effect through suppressed activation of MAPK pathways, especially JNK. Based on the studies of same species, phenolic glycosides were suggested to be the main active ingredients. To our knowledge, this is the first report of any bioactivity of R. hyperboreus which could be a valuable source of natural bioactive agents against inflammation.


Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 324-332 ◽  
Author(s):  
Wenji Xie ◽  
Wenqin Xie ◽  
Zhenming Kang ◽  
Changcheng Jiang ◽  
Naizhen Liu

Background/Aims: Brachial plexus avulsion (BPA) generally causes a chronic persistent pain that lacks efficacious treatment. Curcumin has been found to possess anti-inflammatory abilities. However, little is known about the mechanisms and effects of curcumin in an animal model of BPA. Methods: Mechanical withdrawal thresholds (MWT) were examined by von Frey filaments. Cold allodynia was tested by the acetone spray test. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in rat spinal cords were analyzed by the enzyme-linked immunosorbent assay, and the expression levels of c-Fos and nerve growth factor (NGF) were measured by Western blot. The expression level of glial fibrillary acidic protein (GFAP) was observed by immunofluorescence and Western blot. Results: After curcumin treatment, the MWT showed a significant increase when compared to the BPA group on both hind paws. A remarkable decrease of paw-withdrawal response frequency was observed compared with the BPA group. In addition, curcumin treatment significantly decreased the levels of TNF-α and IL-6 in rat spinal cords that were exceedingly upregulated in the BPA group. The protein levels of c-Fos and NGF were decreased by treatment with curcumin compared with the corresponding protein levels in the BPA group. Besides, curcumin reduced the number of GFAP positive cells and GFAP expression. Conclusions: Our findings suggest that curcumin significantly extenuates the BPA-induced pain and inflammation by reducing the expression level of proinflammatory cytokines and pain-associated proteins and inhibiting the activity of astrocytes.


2010 ◽  
Vol 79 (4) ◽  
pp. 559-569 ◽  
Author(s):  
Barbara Jana ◽  
Marlena Koszykowska ◽  
Aneta Andronowska

The present study was undertaken to determine the effect of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) on prostaglandin (PG)F2α and PGE2 secretion as well as cyclooxygenase-2 (COX-2) protein expression in myometrium collected on days 25, 30 and 40 of pregnancy in pigs. Myometrial slices were incubated for 16 h with IL-1β, IL-6 and TNF-α (1 or 10 ng/ml of medium) or two combinations of the three cytokines (1 or 10 ng/ml of each cytokine per combination). We demonstrated the stimulatory effect of IL-1β and IL-6 on PGF2α and PGE2 secretion from myometrium collected on all examined days of pregnancy, excepting of influence of IL-6 on release of PGF2α by tissue from day 30. In turn, TNF-α was able to stimulate only PGE2 secretion by myometrium of 40-day-pregnant gilts. The three cytokines applied in combination augmented release of PGE2 from myometrium collected on days 30 and 40 of pregnancy. Stimulation of PGE2 secretion by cytokines used individually was more frequent than that of PGF2α. Moreover, an enhancement in PGF2α and/or PGE2 release was accompanied by an increase of COX-2 protein expression. Our study shows the ability of cytokines to stimulate PGF2α and PGE2 release by porcine myometrium from the first third of pregnancy. Obtained data suggest that locally PGs produced in myometrium influencing the uterine contraction activity may be important for the maintenance of myometrial quiescence during pregnancy and confirm also that the complex cytokine network is an important regulatory mechanism of PGs production during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document