scholarly journals Environmental spatial heterogeneity of the impacts of COVID-19 on the top-20 metropolitan cities of Asia-Pacific

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghaffar Ali ◽  
Sawaid Abbas ◽  
Faisal Mueen Qamer ◽  
Syed Muhammad Irteza

AbstractThis study investigated the environmental spatial heterogeneity of novel coronavirus (COVID-19) and spatial and temporal changes among the top-20 metropolitan cities of the Asia-Pacific. Remote sensing-based assessment is performed to analyze before and during the lockdown amid COVID-19 lockdown in the cities. Air pollution and mobility data of each city (Bangkok, Beijing, Busan, Dhaka, Delhi, Ho Chi Minh, Hong Kong, Karachi, Mumbai, Seoul, Shanghai, Singapore, Tokyo, Wuhan, and few others) have been collected and analyzed for 2019 and 2020. Results indicated that almost every city was impacted positively regarding environmental emissions and visible reduction were found in Aerosol Optical Depth (AOD), sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen dioxide (NO2) concentrations before and during lockdown periods of 2020 as compared to those of 2019. The highest NO2 emission reduction (~ 50%) was recorded in Wuhan city during the lockdown of 2020. AOD was highest in Beijing and lowest in Colombo (< 10%). Overall, 90% movement was reduced till mid-April, 2020. A 98% reduction in mobility was recorded in Delhi, Seoul, and Wuhan. This analysis suggests that smart mobility and partial shutdown policies could be developed to reduce environmental pollutions in the region. Wuhan city is one of the benchmarks and can be replicated for the rest of the Asian cities wherever applicable.

Author(s):  
Lara Bittmann

On December 31, 2019, WHO was informed of cases of pneumonia of unknown cause in Wuhan City, China. A novel coronavirus was identified as the cause by Chinese authorities on January 7, 2020 and was provisionally named "2019-nCoV". This new Coronavirus causes a clinical picture which has received now the name COVID-19. The virus has spread subsequently worldwide and was explained on the 11th of March, 2020 by the World Health Organization to the pandemic.


2020 ◽  
Vol 16 (1) ◽  
pp. 6-11
Author(s):  
Ashok Arasu ◽  
Pavithra Balakrishnan ◽  
Thirunavukkarasu Velusamy ◽  
Thiagarajan Ramesh

The 2019 novel coronavirus (2019-nCoV) infection is an emerging pandemic that poses a severe threat to global public health. This pandemic started from the Wuhan City of Hubei Province in China, and is speculated to have originated from bats and spread among humans with an unknown intermediate transmitter. The virus binds to angiotensin-converting enzyme 2 (ACE2), which is abundantly expressed on various human cells, including lung epithelial and intestinal cells, thereby entering into these cells and causing infection. It is transmitted to other humans through airborne droplets from infected patients. Presently there are no specific treatments or vaccines that are available to curtail the spread of this disease. There are few indirect reports that explain the potential importance of the mandated BCG vaccine as a protective factor against COVID-19. There is a speculation that a live attenuated vaccine (BCG vaccine) can be beneficial against COVID-19 to develop the initial immune response, and can also spread in the community, thereby boosting herd immunity to fight against COVID-19. This review summarizes the conclusions of various reports on the BCG vaccine, and is an attempt to establish BCG-vaccination mediated herd immunity as an effective instant intermediate approach in curbing COVID-19 spread in highly populous countries.


2020 ◽  
Author(s):  
Hemant Kulkarni ◽  
Harshwardhan Vinod Khandait ◽  
Uday Wasudeorao Narlawar ◽  
Pragati G Rathod ◽  
Manju Mamtani

Whether weather plays a part in the transmissibility of the novel COronaVIrus Disease-19 (COVID-19) is still not established. We tested the hypothesis that meteorological factors (air temperature, relative humidity, air pressure, wind speed and rainfall) are independently associated with transmissibility of COVID-19 quantified using the basic reproduction rate (R0). We used publicly available datasets on daily COVID-19 case counts (total n = 108,308), three-hourly meteorological data and community mobility data over a three-month period. Estimated R0 varied between 1.15-1.28. Mean daily air temperature (inversely) and wind speed (positively) were significantly associated with time dependent R0, but the contribution of countrywide lockdown to variability in R0 was over three times stronger as compared to that of temperature and wind speed combined. Thus, abating temperatures and easing lockdown may concur with increased transmissibility of COVID-19.


Author(s):  
Arunachalam Ramaiah ◽  
Vaithilingaraja Arumugaswami

ABSTRACTNovel Coronavirus (nCoV) outbreak in the city of Wuhan, China during December 2019, has now spread to various countries across the globe triggering a heightened containment effort. This human pathogen is a member of betacoronavirus genus carrying 30 kilobase of single positive-sense RNA genome. Understanding the evolution, zoonotic transmission, and source of this novel virus would help accelerating containment and prevention efforts. The present study reported detailed analysis of 2019-nCoV genome evolution and potential candidate peptides for vaccine development. This nCoV genotype might have been evolved from a bat-CoV by accumulating non-synonymous mutations, indels, and recombination events. Structural proteins Spike (S), and Membrane (M) had extensive mutational changes, whereas Envelope (E) and Nucleocapsid (N) proteins were very conserved suggesting differential selection pressures exerted on 2019-nCoV during evolution. Interestingly, 2019-nCoV Spike protein contains a 39 nucleotide sequence insertion relative to SARS-like bat-SL-CoVZC45/2017. Furthermore, we identified eight high binding affinity (HBA) CD4 T-cell epitopes in the S, E, M and N proteins, which can be commonly recognized by HLA-DR alleles of Asia and Asia-Pacific Region population. These immunodominant epitopes can be incorporated in universal subunit CoV vaccine. Diverse HLA types and variations in the epitope binding affinity may contribute to the wide range of immunopathological outcomes of circulating virus in humans. Our findings emphasize the requirement for continuous surveillance of CoV strains in live animal markets to better understand the viral adaptation to human host and to develop practical solutions to prevent the emergence of novel pathogenic CoV strains.


2020 ◽  
Author(s):  
Bernhard Egwolf ◽  
O.P. Nicanor Austriaco

ABSTRACTCOVID-19 is a novel respiratory disease first identified in Wuhan, China, that is caused by the novel coronavirus, SARS-CoV-2. To better understand the dynamics of the COVID-19 pandemic in the Philippines, we have used real-time mobility data to modify the DELPHI Epidemiological Model recently developed at M.I.T., and to simulate the pandemic in Metro Manila. We have chosen to focus on the National Capital Region, not only because it is the nation’s demographic heart where over a tenth of the country’s population live, but also because it has been the epidemiological epicenter of the Philippine pandemic. Our UST CoV-2 model suggests that the government-imposed enhanced community quarantine (ECQ) has successfully limited the spread of the pandemic. It is clear that the initial wave of the pandemic is flattening, though suppression of viral spread has been delayed by the local pandemics in the City of Manila and Quezon City. Our data also reveals that replacing the ECQ with a General Community Quarantine (GCQ) will increase the forecasted number of deaths in the nation’s capital unless rigorous tracing and testing can be implemented to prevent a second wave of the pandemic.


Author(s):  
Kenji Mizumoto ◽  
Katsushi Kagaya ◽  
Gerardo Chowell

AbstractBackgroundSince the first cluster of cases was identified in Wuhan City, China, in December, 2019, coronavirus disease 2019 (COVID-19) rapidly spread around the world. Despite the scarcity of publicly available data, scientists around the world have made strides in estimating the magnitude of the epidemic, the basic reproduction number, and transmission patterns. Accumulating evidence suggests that a substantial fraction of the infected individuals with the novel coronavirus show little if any symptoms, which highlights the need to reassess the transmission potential of this emerging disease. In this study, we derive estimates of the transmissibility and virulence of COVID-19 in Wuhan City, China, by reconstructing the underlying transmission dynamics using multiple data sources.MethodsWe employ statistical methods and publicly available epidemiological datasets to jointly derive estimates of transmissibility and severity associated with the novel coronavirus. For this purpose, the daily series of laboratory–confirmed COVID-19 cases and deaths in Wuhan City together with epidemiological data of Japanese repatriated from Wuhan City on board government–chartered flights were integrated into our analysis.ResultsOur posterior estimates of basic reproduction number (R) in Wuhan City, China in 2019–2020 reached values at 3.49 (95%CrI: 3.39–3.62) with a mean serial interval of 6.0 days, and the enhanced public health intervention after January 23rd in 2020 was associated with a significantly reduced R at 0.84 (95%CrI: 0.81–0.88), with the total number of infections (i.e. cumulative infections) estimated at 1906634 (95%CrI: 1373500–2651124) in Wuhan City, elevating the overall proportion of infected individuals to 19.1% (95%CrI: 13.5–26.6%). We also estimated the most recent crude infection fatality ratio (IFR) and time–delay adjusted IFR at 0.04% (95% CrI: 0.03%–0.06%) and 0.12% (95%CrI: 0.08–0.17%), respectively, estimates that are several orders of magnitude smaller than the crude CFR estimated at 4.06%ConclusionsWe have estimated key epidemiological parameters of the transmissibility and virulence of COVID-19 in Wuhan, China during January-February, 2020 using an ecological modelling approach. The power of this approach lies in the ability to infer epidemiological parameters with quantified uncertainty from partial observations collected by surveillance systems.


2021 ◽  
Vol 25 (3) ◽  
pp. 271-282
Author(s):  
Didik Priyandoko ◽  
◽  
Wahyu Widowati ◽  
Mawar Subangkit ◽  
Diana Jasaputra ◽  
...  

The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly from its origin in Wuhan City, Hubei Province, China, to the rest of the world. The efficacy of herbal treatment in the control of contagious disease was demonstrated during the 2003 outbreak of severe acute respiratory syndrome (SARS). Natural compound used for this study were isoflavone and myricetin. Molecular docking was performed to analyze binding mode of the compounds towards 12 proteins related to COVID-19. The prediction shows that isoflavone and myricetin have moderate probability of antiviral activity. All of the docked compounds occupied the active sites of the proteins related to COVID-19. Based on QSAR and molecular docking, interactions were predicted with 10 out of 12 potential COVID-19 proteins for myricetin and with 9 out of 12 proteins interactions for isoflavone. A potential disease alleviating action is suggested for isoflavone and myricetin in the context of COVID-19 infection.


Author(s):  
Qingxian Cai ◽  
Deliang Huang ◽  
Pengcheng Ou ◽  
Hong Yu ◽  
Zhibin Zhu ◽  
...  

AbstractBackgroundA new type of novel coronavirus infection (COVID-19) occurred in Wuhan, Hubei Province. Previous investigations reported patients in Wuhan city often progressed into severe or critical and had a high mortality rate.The clinical characteristics of affected patients outside the epicenter of Hubei province are less well understood.MethodsAll confirmed COVID-19 case treated in the Third People’s Hospital of Shenzhen,from January 11, 2020 to February 6, 2020, were included in this study. We analyzed the epidemiological and clinical features of these cases to better inform patient management in normal hospital settings.ResultsAmong the 298 confirmed cases, 233(81.5%) had been to Hubei while 42(14%) had not clear epidemiological history. Only 192(64%) cases presented with fever as initial symptom. The lymphocyte count decreased in 38% patients after admission. The number (percent) of cases classified as non-severe and severe was 240(80.6%) and 58(19.4%) respectively. Thirty-two patients (10.7%) needed ICU care. Compared to the non-severe cases, severe cases were associated with older age, underlying diseases, as well as higher levels of CRP, IL-6 and ESR. The median (IRQ) duration of positive viral test were 14(10-19). Slower clearance of virus was associated with higher risk of progression to severe clinical condition. As of February 14, 2020, 66(22.1%) patients were discharged and the overall mortality rate remains 0.ConclusionsIn a designated hospital outside the Hubei Province, COVID-19 patients were mainly characterized by mild symptoms and could be effectively manage by properly using the existing hospital system.


2021 ◽  
Vol 1 (4) ◽  
pp. e207
Author(s):  
Sahrish Khan ◽  
Atiq ur Rahman ◽  
Muhammad Imran

At the end of December 2019 in the Wuhan City of China, a novel coronavirus (Covid-19) outbreak has been proclaimed. Several cases have arisen in other cities of China. It spread simultaneously worldwide in 209 countries of Europe, Australia, America, Asia, and Pakistan. Mortality is high; millions of people have been affected while cases are rapidly increasing in the world. Different controlling strategies have been adopted for COVID-19. Pakistan took rigorous measures like the hospital, specific laboratories for testing, centres for quarantine, awareness campaign, Ehsaas Emergency Cash Programme and lockdown for controlling this virus. There is no antiviral and vaccine based treatment only preventive measures are taken.


Author(s):  
Hui Ding ◽  
Zhaoling Shi ◽  
Zhen Ruan ◽  
Xiaoning Cheng ◽  
Ruying Li ◽  
...  

ABSTRACT Since the outbreak of 2019 novel coronavirus (2019-nCoV) infection in Wuhan City, China, pediatric cases have gradually increased. It is very important to prevent cross-infection in pediatric fever clinics, to identify children with fever in pediatric fever clinics, and to strengthen the management of pediatric fever clinics. According to prevention and control programs, we propose the guidance on the management of pediatric fever clinics during the nCoV pneumonia epidemic period, which outlines in detail how to optimize processes, prevent cross-infection, provide health protection, and prevent disinfection of medical staff. The present consideration statement summarizes current strategies on the pre-diagnosis, triage, diagnosis, treatment, and prevention of 2019-nCoV infection, which provides practical suggestions on strengthening the management of pediatric fever clinics during the nCoV pneumonia epidemic period.


Sign in / Sign up

Export Citation Format

Share Document