scholarly journals Prediction across healthcare settings: a case study in predicting emergency department disposition

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuval Barak-Corren ◽  
Pradip Chaudhari ◽  
Jessica Perniciaro ◽  
Mark Waltzman ◽  
Andrew M. Fine ◽  
...  

AbstractSeveral approaches exist today for developing predictive models across multiple clinical sites, yet there is a lack of comparative data on their performance, especially within the context of EHR-based prediction models. We set out to provide a framework for prediction across healthcare settings. As a case study, we examined an ED disposition prediction model across three geographically and demographically diverse sites. We conducted a 1-year retrospective study, including all visits in which the outcome was either discharge-to-home or hospitalization. Four modeling approaches were compared: a ready-made model trained at one site and validated at other sites, a centralized uniform model incorporating data from all sites, multiple site-specific models, and a hybrid approach of a ready-made model re-calibrated using site-specific data. Predictions were performed using XGBoost. The study included 288,962 visits with an overall admission rate of 16.8% (7.9–26.9%). Some risk factors for admission were prominent across all sites (e.g., high-acuity triage emergency severity index score, high prior admissions rate), while others were prominent at only some sites (multiple lab tests ordered at the pediatric sites, early use of ECG at the adult site). The XGBoost model achieved its best performance using the uniform and site-specific approaches (AUC = 0.9–0.93), followed by the calibrated-model approach (AUC = 0.87–0.92), and the ready-made approach (AUC = 0.62–0.85). Our results show that site-specific customization is a key driver of predictive model performance.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jiang Li ◽  
Xiaowei S. Yan ◽  
Durgesh Chaudhary ◽  
Venkatesh Avula ◽  
Satish Mudiganti ◽  
...  

AbstractLaboratory data from Electronic Health Records (EHR) are often used in prediction models where estimation bias and model performance from missingness can be mitigated using imputation methods. We demonstrate the utility of imputation in two real-world EHR-derived cohorts of ischemic stroke from Geisinger and of heart failure from Sutter Health to: (1) characterize the patterns of missingness in laboratory variables; (2) simulate two missing mechanisms, arbitrary and monotone; (3) compare cross-sectional and multi-level multivariate missing imputation algorithms applied to laboratory data; (4) assess whether incorporation of latent information, derived from comorbidity data, can improve the performance of the algorithms. The latter was based on a case study of hemoglobin A1c under a univariate missing imputation framework. Overall, the pattern of missingness in EHR laboratory variables was not at random and was highly associated with patients’ comorbidity data; and the multi-level imputation algorithm showed smaller imputation error than the cross-sectional method.


2020 ◽  
Vol 12 (6) ◽  
pp. 2208 ◽  
Author(s):  
Jamie E. Filer ◽  
Justin D. Delorit ◽  
Andrew J. Hoisington ◽  
Steven J. Schuldt

Remote communities such as rural villages, post-disaster housing camps, and military forward operating bases are often located in remote and hostile areas with limited or no access to established infrastructure grids. Operating these communities with conventional assets requires constant resupply, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote community planners can mitigate these negative impacts by selecting sustainable technologies that minimize resource consumption and emissions. However, the alternatives often come at a higher procurement cost and mobilization requirement. To assist planners with this challenging task, this paper presents the development of a novel infrastructure sustainability assessment model capable of generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle costs over the community’s anticipated lifespan. Model performance was evaluated using a case study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and 48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist planners in identifying optimal combinations of infrastructure alternatives that minimize negative sustainability impacts, leading to remote communities that are more self-sufficient with reduced emissions and costs.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


2021 ◽  
pp. 247553032110007
Author(s):  
Eric Munger ◽  
Amit K. Dey ◽  
Justin Rodante ◽  
Martin P. Playford ◽  
Alexander V. Sorokin ◽  
...  

Background: Psoriasis is associated with accelerated non-calcified coronary plaque burden (NCB) by coronary computed tomography angiography (CCTA). Machine learning (ML) algorithms have been shown to effectively identify cardiometabolic variables with NCB in cross-sectional analysis. Objective: To use ML methods to characterize important predictors of change in NCB by CCTA in psoriasis over 1-year of observation. Methods: The analysis included 182 consecutive patients with 80 available variables from the Psoriasis Atherosclerosis Cardiometabolic Initiative, a prospective, observational cohort study at baseline and 1-year using the random forest regression algorithm. NCB was assessed at baseline and 1-year from CCTA. Results: Using ML, we identified variables of high importance in the context of predicting changes in NCB. For the cohort that worsened NCB (n = 102), top baseline variables were cholesterol (total and HDL), white blood cell count, psoriasis area severity index score, and diastolic blood pressure. Top predictors of 1-year change were change in visceral adiposity, white blood cell count, total cholesterol, c-reactive protein, and absolute lymphocyte count. For the cohort that improved NCB (n = 80), the top baseline variables were HDL cholesterol related including apolipoprotein A1, basophil count, and psoriasis area severity index score, and top predictors of 1-year change were change in apoA, apoB, and systolic blood pressure. Conclusion: ML methods ranked predictors of progression and regression of NCB in psoriasis over 1 year providing strong evidence to focus on treating LDL, blood pressure, and obesity; as well as the importance of controlling cutaneous disease in psoriasis.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e044500
Author(s):  
Yauhen Statsenko ◽  
Fatmah Al Zahmi ◽  
Tetiana Habuza ◽  
Klaus Neidl-Van Gorkom ◽  
Nazar Zaki

BackgroundDespite the necessity, there is no reliable biomarker to predict disease severity and prognosis of patients with COVID-19. The currently published prediction models are not fully applicable to clinical use.ObjectivesTo identify predictive biomarkers of COVID-19 severity and to justify their threshold values for the stratification of the risk of deterioration that would require transferring to the intensive care unit (ICU).MethodsThe study cohort (560 subjects) included all consecutive patients admitted to Dubai Mediclinic Parkview Hospital from February to May 2020 with COVID-19 confirmed by the PCR. The challenge of finding the cut-off thresholds was the unbalanced dataset (eg, the disproportion in the number of 72 patients admitted to ICU vs 488 non-severe cases). Therefore, we customised supervised machine learning (ML) algorithm in terms of threshold value used to predict worsening.ResultsWith the default thresholds returned by the ML estimator, the performance of the models was low. It was improved by setting the cut-off level to the 25th percentile for lymphocyte count and the 75th percentile for other features. The study justified the following threshold values of the laboratory tests done on admission: lymphocyte count <2.59×109/L, and the upper levels for total bilirubin 11.9 μmol/L, alanine aminotransferase 43 U/L, aspartate aminotransferase 32 U/L, D-dimer 0.7 mg/L, activated partial thromboplastin time (aPTT) 39.9 s, creatine kinase 247 U/L, C reactive protein (CRP) 14.3 mg/L, lactate dehydrogenase 246 U/L, troponin 0.037 ng/mL, ferritin 498 ng/mL and fibrinogen 446 mg/dL.ConclusionThe performance of the neural network trained with top valuable tests (aPTT, CRP and fibrinogen) is admissible (area under the curve (AUC) 0.86; 95% CI 0.486 to 0.884; p<0.001) and comparable with the model trained with all the tests (AUC 0.90; 95% CI 0.812 to 0.902; p<0.001). Free online tool at https://med-predict.com illustrates the study results.


2020 ◽  
Vol 41 (S1) ◽  
pp. s145-s146
Author(s):  
Kelly Walblay ◽  
Tristan McPherson ◽  
Elissa Roop ◽  
David Soglin ◽  
Ann Valley ◽  
...  

Background:Candida auris and carbapenemase-producing organisms (CPO) are multidrug-resistant organisms that can colonize people for prolonged periods and can cause invasive infections and spread in healthcare settings, particularly in high-acuity long-term care facilities. Point-prevalence surveys (PPSs) conducted in long-term acute-care hospitals in the Chicago region identified median prevalence of colonization to be 31% for C. auris and 24% for CPO. Prevalence of C. auris colonization has not been described in pediatric populations in the United States, and limited data exist on CPO colonization in children outside intensive care units. The Chicago Department of Public Health (CDPH) conducted a PPS to assess C. auris and CPO colonization in a pediatric hospital serving high-acuity patients with extended lengths of stay (LOS). Methods: CDPH conducted a PPS in August 2019 in a pediatric hospital with extended LOS to screen for C. auris and CPO colonization. Medical devices (ie, gastrostomy tubes, tracheostomies, mechanical ventilators, and central venous catheters [CVC]) and LOS were documented. Screening specimens consisted of composite bilateral axillae and groin swabs for C. auris and rectal swabs for CPO testing. The Wisconsin State Laboratory of Hygiene tested all specimens. Real-time polymerase chain reaction (PCR) assays were used to detect C. auris DNA and carbapenemase genes: blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP (Xpert Carba-R Assay, Cepheid, Sunnyvale, CA). All axillae and groin swabs were processed by PCR and culture to identify C. auris. For CPO, culture was only performed on PCR-positive specimens. Results: Of the 29 patients hospitalized, 26 (90%) had gastrostomy tubes, 24 (83%) had tracheostomies, 20 (69%) required mechanical ventilation, and 3 (10%) had CVCs. Also, 25 (86%) were screened for C. auris and CPO; 4 (14%) lacked parental consent and were not swabbed. Two rectal specimens were unsatisfactory, producing invalid CPO test results. Median LOS was 35 days (range, 1–300 days). No patients were positive for C. auris. From CPO screening, blaOXA-48 was detected in 1 patient sample, yielding a CPO prevalence of 3.4% (1 of 29). No organism was recovered from the blaOXA-48 positive specimen. Conclusions: This is the first documented screening of C. auris colonization in a pediatric hospital with extended LOS. Despite a high prevalence of C. auris and CPOs in adult healthcare settings of similar acuity in the region, C. auris was not identified and CPOs were rare at this pediatric facility. Additional evaluations in pediatric hospitals should be conducted to further understand C. auris and CPO prevalence in this population.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document