scholarly journals Impact of orbitally-driven seasonal insolation changes on Afro-Asian summer monsoons through the Holocene

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chi-Hua Wu ◽  
Pei-Chia Tsai

AbstractUnderstanding what drives a shift of the Afro–Asian summer monsoons from the continents to oceanic regions provides valuable insight into climate dynamics, changes, and modeling. Here we use data–model synthesis to focus on the differential seasonal responses of solar insolation and monsoons to orbital changes in the Holocene. We observe coordinated and stepwise seasonal evolution of summer monsoons across the mid-Holocene, suggesting the strengthening of the midlatitude jet stream as a bridge in the upper troposphere. Prior to the mid-Holocene, insolation had decreased considerably in early summer; the continental monsoons migrated southeastward, which corresponded to a more pronounced rainy season in coastal East Asia. In late summer, insolation did not decrease until the mid-Holocene. The continued weakening of the continental monsoons, combined with weakened insolation, rapidly enhanced the intrinsic dynamics over East Asia–Western North Pacific and accelerated a large-scale migration of the monsoon, suggesting orbital control of seasonal diversity.

Author(s):  
Sigrún Dögg Eddudóttir ◽  
Eva Svensson ◽  
Stefan Nilsson ◽  
Anneli Ekblom ◽  
Karl-Johan Lindholm ◽  
...  

AbstractShielings are the historically known form of transhumance in Scandinavia, where livestock were moved from the farmstead to sites in the outlands for summer grazing. Pollen analysis has provided a valuable insight into the history of shielings. This paper presents a vegetation reconstruction and archaeological survey from the shieling Kårebolssätern in northern Värmland, western Sweden, a renovated shieling that is still operating today. The first evidence of human activities in the area near Kårebolssätern are Hordeum- and Cannabis-type pollen grains occurring from ca. 100 bc. Further signs of human impact are charcoal and sporadic occurrences of apophyte pollen from ca. ad 250 and pollen indicating opening of the canopy ca. ad 570, probably a result of modification of the forest for grazing. A decrease in land use is seen between ad 1000 and 1250, possibly in response to a shift in emphasis towards large scale commodity production in the outlands. Emphasis on bloomery iron production and pitfall hunting may have caused a shift from agrarian shieling activity. The clearest changes in the pollen assemblage indicating grazing and cultivation occur from the mid-thirteenth century, coinciding with wetter climate at the beginning of the Little Ice Age. The earliest occurrences of anthropochores in the record predate those of other shieling sites in Sweden. The pollen analysis reveals evidence of land use that predates the results of the archaeological survey. The study highlights how pollen analysis can reveal vegetation changes where early archaeological remains are obscure.


2018 ◽  
Vol 31 (18) ◽  
pp. 7209-7224 ◽  
Author(s):  
Jianqi Sun ◽  
Jing Ming ◽  
Mengqi Zhang ◽  
Shui Yu

In June 2017, south China suffered from intense rainfall that broke the record spanning the previous 70 years. In this study, the large-scale circulations associated with the south China June rainfall are analyzed. The results show that the anomalous Pacific–Japan (PJ) pattern is a direct influence on south China June rainfall or East Asian early summer rainfall. In addition, the Australian high was the strongest in June 2017 during the past 70 years, which can increase the equatorward flow to northern Australia and activate convection over the Maritime Continent. Enhanced convection over the Maritime Continent can further enhance local meridional circulation along East Asia, engendering downward motion over the tropical western North Pacific and enhancing the western Pacific subtropical high (WPSH) and upward motion over south China, which increases the rainfall therein. In addition, a strong wave train pattern associated with North Atlantic air–sea interaction was observed in June 2017 at Northern Hemispheric mid- to high latitudes; it originated from the North Atlantic and propagated eastward to East Asia, resulting in an anomalous anticyclone over the Mongolian–Baikal Lake region. This anomalous anticyclone produced strong northerly winds over East Asia that encountered the southerly associated with the WPSH over south China, thereby favoring intense rainfall over the region. Case studies of June 2017 and climate research based on data during 1979–2017 and 1948–2017 indicate that the extremities of the atmospheric circulation over south Europe and Australian high and their coupling with the PJ pattern could be responsible for the record-breaking south China rainfall in June 2017.


2016 ◽  
Author(s):  
B. Barret ◽  
B. Sauvage ◽  
Y. Bennouna ◽  
E. Le Flochmoen

Abstract. During the Asian Summer Monsoon, the circulation in the Upper Troposphere-Lower Stratosphere (UTLS) is dominated by the Asian Monsoon Anticyclone (AMA). Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3) and its precursors, such as carbon monoxide (CO) and nitrogen oxides (NOx). Many studies based on global modelisation and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN) into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the Metop-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC/IAGOS tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9% and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26% but the correlation between both is high (0.94). GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South-Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (∼25 ppbv) than East-Asian emissions (∼10 ppbv). The correlation between enhanced emissions over the Indo–gangetic–Plain and monsoon deep convection is responsible for this larger impact. Consistently, South-Asian anthropogenic NOx emissions also play a larger role in producing O3 within the AMA (∼8 ppbv) than East-Asian emissions (∼5 ppbv) but Asian lightning produced NOx are responsible for the largest O3 production (10–14 ppbv). Stratosphere to Troposphere Exchanges (STE) are also important in transporting O3 in the upper part of the AMA.


2020 ◽  
pp. 1-45
Author(s):  
Hui-Wen Lai ◽  
Hans W. Chen ◽  
Julia Kukulies ◽  
Tinghai Ou ◽  
Deliang Chen

AbstractPrecipitation over the Tibetan Plateau (TP) has major societal impacts in South and East Asia, but its spatiotemporal variations are not well understood mainly because of the sparsely distributed in-situ observation sites. With help of the Global Precipitation Measurement satellite product IMERG and ERA5 reanalysis, distinct precipitation seasonality features over the TP were objectively classified using a self-organizing map algorithm fed with ten-day averaged precipitation from 2000 to 2019. The classification reveals three main precipitation regimes with distinct seasonality of precipitation: winter peak, centered at the western plateau; early summer peak, found on the eastern plateau; and late summer peak, mainly located on the southwestern plateau. On a year-to-year basis, the winter peak regime is relatively robust, while the early summer and late summer peak regimes tend to shift mainly between the central and northern TP, but are robust in the eastern and southwestern TP. A composite analysis shows that the winter peak regime experiences larger amounts of precipitation in winter and early spring when the westerly jet is anomalously strong to the north of the TP. Precipitation variations in the late summer peak regime are associated with intensity changes in the South Asian High and Indian summer monsoon. The precipitation in the early summer peak regime is correlated with the Indian summer monsoon together with anticyclonic circulation over the western North Pacific. The results provide a basic understanding of precipitation seasonality variations over the TP and associated large-scale conditions.


1992 ◽  
Vol 118 (1) ◽  
pp. 47-53
Author(s):  
H. Fujita ◽  
L. R. Humphreys

SUMMARYPastures of Digitaria decumbens (pangola grass) previously oversown with Lotononis bainesii at Mount Cotton, south-east Queensland, Australia, were grazed by sheep for 3 years (1985–87), using a factorial combination of seasonal variations in stocking rate.Lotononis behaved as a short-lived plant with a mean half-life of 4·2 months (range 1·6–10·3); rate of mortality was positively related to initial seedling density. The proportion of lotononis remained very low for the first 2 years of the experiment, when conditions were unsuitable for large-scale seedling regeneration, which was also limited by the hardness of the seed reserves. Subsequently, lotononis regenerated well in treatments which combined the following features: (i) light grazing (5 sheep/ha) during the main flowering period of spring-early summer, (ii) heavy short-duration grazing in mid-summer to create a ‘gap’ and (iii) medium or heavy (18 or 27 sheep/ha) grazing during late summer-autumn to reduce competition from pangola grass.The ecological niche of lotononis and the possible use of complementary pastures are discussed.


2009 ◽  
Vol 22 (13) ◽  
pp. 3864-3875 ◽  
Author(s):  
Bin Wang ◽  
Jian Liu ◽  
Jing Yang ◽  
Tianjun Zhou ◽  
Zhiwei Wu

Abstract The current seasonal prediction of East Asia (EA) summer monsoon deals with June–July–August (JJA) mean anomalies. This study shows that the EA summer monsoon may be divided into early summer [May–June (MJ)] and late summer [July–August (JA)] and exhibits remarkable differences in mean state between MJ and JA. This study reveals that the principal modes of interannual precipitation variability have distinct spatial and temporal structures during the early and late summer. These principal modes can be categorized as either El Niño–Southern Oscillation (ENSO) related or non-ENSO related. During the period of 1979–2007, ENSO-related modes explain 35% of MJ variance and 45% of JA variance, and non-ENSO-related modes account for 25% of MJ variance and 20% of JA variance. For ENSO-related variance, about two-thirds are associated with ENSO decaying phases, and one-third is associated with ENSO developing phases. The ENSO-related MJ modes generally concur with rapid decay or early development of ENSO episodes, and the opposite tends to apply to ENSO-related JA modes. The non-ENSO MJ mode is preceded by anomalous land surface temperatures over southern China during the previous March and April. The non-ENSO JA mode is preceded by lasting equatorial western Pacific (the Niño-4 region) warming from the previous winter through late summer. The results suggest that 1) prediction of bimonthly (MJ) and (JA) anomalies may be useful, 2) accurate prediction of the detailed evolution of ENSO is critical for prediction of ENSO-related bimonthly rainfall anomalies over East Asia, and 3) non-ENSO-related modes are of paramount importance during ENSO neutral years. Further establishment of the physical linkages between the non-ENSO modes and their corresponding precursors may provide additional sources for EA summer monsoon prediction.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1685
Author(s):  
Aida Akbarzadeh ◽  
Sokratis Katsikas

Contemporary Critical Infrastructures (CIs), such as the power grid, comprise cyber physical systems that are tightly coupled, to form a complex system of interconnected components with interacting dependencies. Modelling methodologies have been suggested as proper tools to provide better insight into the dependencies and behavioural characteristics of these complex systems. In order to facilitate the study of interconnections in and among critical infrastructures, and to provide a clear view of the interdependencies among their cyber and physical components, this paper proposes a novel method, based on a graphical model called Modified Dependency Structure Matrix (MDSM). The MDSM provides a compact perspective of both inter-dependency and intra-dependency between subsystems of one complex system or two distinct systems. Additionally, we propose four parameters that allow the quantitative assessment of the characteristics of dependencies, including multi-order dependencies in large scale CIs. We illustrate the workings of the proposed method by applying it to a micro-distribution network based on the G2ELAB 14-Bus model. The results provide valuable insight into the dependencies among the network components and substantiate the applicability of the proposed method for analyzing large scale cyber physical systems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mona Ghazanfari ◽  
Amir Arastehfar ◽  
Lotfollah Davoodi ◽  
Jamshid Yazdani Charati ◽  
Maryam Moazeni ◽  
...  

Background: Recent studies from multiple countries have shown a high prevalence of coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) among severely ill patients. Despite providing valuable insight into the clinical management of CAPA, large-scale prospective studies are limited. Here, we report on one of the largest multicenter epidemiological studies to explore the clinical features and prevalence of COVID-19-associated pulmonary mold infections (CAPMIs) among mechanically ventilated patients.Methods: Bronchoalveolar lavage (BAL) and serum samples were collected for culture, galactomannan (GM), and β-D-glucan (BDG) testing. Patients were classified as probable CAPMI based on the presence of host factors, radiological findings, and mycological criteria.Results: During the study period, 302 COVID-19 patients were admitted to intensive care units (ICUs), among whom 105 were mechanically ventilated for ≥4 days. Probable CAPMI was observed among 38% of patients (40/105), among whom BAL culture of 29 patients turned positive for molds, while galactomannan testing on BAL (GM index ≥1) and serum (GM index >0.5) samples were positive for 60% (24/40) and 37.5% (15/39) of patients, respectively. Aspergillus (22/29; 75.8%) and Fusarium (6/29; 20.6%) constituted 96.5% of the molds isolated. Diaporthe foeniculina was isolated from a COVID-19 patient. None of the patients who presented with CAPMI were treated with antifungal drugs.Conclusion: Despite being prevalent, the absence of appropriate antifungal treatment highlights that CAPMI is a neglected complication among mechanically ventilated COVID-19 patients admitted to ICUs. CAPMI can be caused by species other than Aspergillus.


Sign in / Sign up

Export Citation Format

Share Document