scholarly journals In vivo upregulation of CD95 and CD95L causes synergistic inhibition of angiogenesis by TSP1 peptide and metronomic doxorubicin treatment

2005 ◽  
Vol 12 (6) ◽  
pp. 649-658 ◽  
Author(s):  
A J Quesada ◽  
T Nelius ◽  
R Yap ◽  
T A Zaichuk ◽  
A Alfranca ◽  
...  
2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Wahiba Dhahri ◽  
Sylvie Dussault ◽  
Paola Haddad ◽  
Julie Turgeon ◽  
Sophie Tremblay ◽  
...  

Background: Exposure to cigarette smoke is associated with impaired neovascularization in response to ischemia. The precise mechanisms involved in that process remain to be determined. Micro RNA (miR) are emerging as key regulators of several physiological processes, including angiogenesis. Here we investigated the potential role of miRs for the modulation of neovascularization in the context of cigarette smoking. Methods and Results: Human Umbilical Vascular Endothelial Cells (HUVECs) were exposed or not to cigarette smoke extracts (CSE). Using Affimetrix GeneChip miRNA array analysis, we found that the pro-angiogenic miR let-7f was downregulated by 40% in HUVECs exposed to CSE. Using an inhibitor of let-7f, we demonstrated reduced migration and tube formation in HUVECs, reproducing the phenotype induced by CSE. A let-7f mimic could rescue cellular migration and tube formation in HUVECs exposed to CSE. Moreover, the expression of let-7f is significantly reduced in the ischemic muscles of mice exposed to cigarette smoke (CS). In vivo, hindlimb ischemia was surgically provoked by femoral artery removal to mice exposed (SMK) or not to CS for two weeks with a local injection of a control or a let-7f mimic. Let-7f mimic could rescue blood flow recuperation and capillary density in ischemic muscles 21 days post-ischemia associated with improved mobility. We found that CS was associated with reduced number of endothelial progenitor cells (EPCs) and impairment of angiogenic activities. Importantly, let-7f mimic rescued EPC number and EPC functional activities in SMK group. TGF-β-RI and HIF1AN are predicted to be targeted by let-7f and both are increased in SMK mice, whereas the expression of HIF-1a and VEGF are reduced in these mice. Interestingly, SMK mice injected with a let-7f mimic have decreased muscle expression of TGF-β-RI and HIF1AN associated with normalized HIF-1 and VEGF expression. Conclusion: Our results suggest that a reduction in the expression of let-7f could be involved in the cigarette smoke-induced inhibition of angiogenesis through modulation of TGF-β-RI and HIF1AN. Overexpression of let-7f using a miR mimic could constitute a novel therapeutic strategy to improve ischemia-induced neovascularization in pathological conditions.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Hyun Ju Kim ◽  
Mok-Ryeon Ahn

Apigenin has been reported to exert angiogenic and anticancer activities in vitro. The mechanism of inhibition of angiogenesis by apigenin, however, has not been well-established. In this study, we investigated whether apigenin not only inhibited tube formation but also induced apoptosis in human umbilical vein endothelial cells (HUVECs). Furthermore, strong antiangiogenic activity of apigenin was observed in the in vivo assay using chick embryo chorioallantoic membrane (CAM). We also analyzed changes in survival signals and the apoptotic pathway through Western blotting. The results indicate that apigenin exerts its antiangiogenic effects through induction of endothelial apoptosis.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 903
Author(s):  
David S. Hydock ◽  
Chia-Ying Lien ◽  
Brock T. Jensen ◽  
Traci L. Parry ◽  
Carole M. Schneider ◽  
...  

Author(s):  
Guohua Lou ◽  
Liang Chen ◽  
Caixia Xia ◽  
Weina Wang ◽  
Jinjin Qi ◽  
...  

Abstract Background MiR-199a-3p (miR-199a) can enhance the chemosensitivity of hepatocellular carcinoma (HCC). Because of the easy degradation of miRNA by direct infusion, effective vehicle-mediated delivery of miR-199a may represent a new strategy for improving HCC chemotherapy. Considering mesenchymal stem cell (MSC)-derived exosomes as promising natural nanovectors for drug and molecule delivery, we aimed to determine whether exosomes from adipose tissue-derived MSCs (AMSCs) could be used to deliver miR-199a and improve HCC chemosensitivity. Methods MiR-199a-modified AMSCs (AMSC-199a) were constructed by miR-199a lentivirus infection and puromycin selection. MiR-199-modified exosomes (AMSC-Exo-199a) were isolated from the supernatant of AMSC-199a and were assessed by transmission electron microscopy, nanoparticle tracking analysis, and flow cytometry analysis. The expression levels of miR-199a in HCC samples, AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The effects of AMSC-Exo-199a on HCC chemosensitivity were determined by cell proliferation and apoptosis assays and by i.v. injection into orthotopic HCC mouse models with doxorubicin treatment. MTOR, p-4EBP1 and p-70S6K levels in HCC cells and tissues were quantified by Western blot. Results AMSC-Exo-199a had the classic characteristics of exosomes and could effectively mediate miR-199a delivery to HCC cells. Additionally, AMSC-Exo-199a significantly sensitized HCC cells to doxorubicin by targeting mTOR and subsequently inhibiting the mTOR pathway. Moreover, i.v.-injected AMSC-Exo-199a could distribute to tumor tissue and markedly increased the effect of Dox against HCC in vivo. Conclusions AMSC-Exo-199a can be an effective vehicle for miR-199a delivery, and they effectively sensitized HCC to chemotherapeutic agents by targeting mTOR pathway. AMSC-Exo-199a administration may provide a new strategy for improving HCC chemosensitivity.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Shaopeng Wang ◽  
Caihua Zhang ◽  
Guang Yang ◽  
Yanzong Yang

Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4214-4214
Author(s):  
M.J. Braunstein ◽  
E. Smith ◽  
C. Timucin ◽  
F. Doñate ◽  
J.C. Juarez ◽  
...  

Abstract Background: Identifying biomarkers that monitor clinical response to cancer therapies is crucial. Tetrathiomolybdate (TM) is a highly specific, high-affinity, orally available copper-binding compound that inhibits CuZn SOD1, leading to robust anti-angiogenic and anti-tumor effects. TM is currently being evaluated in Phase II cancer trials including for relapsed and refractory multiple myeloma (MM). TM’s inhibition of angiogenesis has been attributed to depletion of systemic Cu, which is known to affect multiple key angiogenesis regulators; however, in mice, inhibition of angiogenesis by TM occurred before a measurable decrease in systemic Cu. We have recently shown that in MM, circulating endothelial progenitor cell (EPC) levels serve as a reliable biomarker of disease severity which covaries with tumor load and disease progression. Furthermore, recent evidence from our laboratory and by others indicates that EPCs display evidence of clonality and are genetically related to MM cells. In the present study, the relationship between anti-angiogenic and anti-SOD1 activities of TM were compared by determining its effects on: circulating endothelial progenitor cells (EPCs) in bonnet macaques (M. radiata); on angiogenesis and SOD1 activity in blood cells from mice and humans. Methods: TM was manufactured with >99% purity using a proprietary process (choline salt: ATN-224). For animal studies, three female and three male young adult monkeys were treated with TM (0.5 mg/kg, s.c.) daily for 22 days, followed by a 26 day drug holiday, and a second course of drug. Blood was drawn from the cephalic vein, separated by Ficoll, and red cell lysis. EPCs were identified as CD31+/CD133+/CD45− weak cells using 3-color flow cytometry. For SOD activity, blood from normal control subjects was incubated with TM for 5.5 hr at 37°C. SOD activity was measured in 30 μg of protein from treated blood pellets using an SOD Activity Kit. Results: Administration of TM to the monkeys resulted in a rapid, profound, and reversible decrease in circulating EPCs without significant toxicity. The levels of EPCs increased initially at day 6 in 5 of the 6 subjects, and then decreased to 7% of baseline at day 21. The EPC levels rebounded to normal levels once treatment was discontinued and dropped again after treatment was reinstated. Other hematopoietic parameters (RBC, WBC, platelet counts, and hemoglobin) were not affected by treatment. Although we did not measure blood cell SOD in the macaque study, substantial inhibition of blood cell SOD is associated with hematologic toxicities which did not occur in these animals, suggesting that RBC SOD activity is inhibited at higher doses than those needed for anti-angiogenic activity. TM treatment inhibited SOD activity in blood cell pellets obtained from human controls in a dose dependent manner, with an IC50 3 μM. Conclusion: These results show, for the first time, that in vivo effects of TM include suppression of circulating EPC levels. Since circulating EPCs are genetically related to tumor cells in MM, at least the anti-MM effects of TM may depend on its suppressive effects on EPCs as well as on angiogenesis in general. Furthermore, EPCs are a sensitive indicator of TM actions since their reversible modulation correlated with drug therapy. Lastly, macaques may represent a reliable model of human response to determine drug effects on EPCs and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document