scholarly journals In Vivo Measurement of Density and Affinity of the Monoamine Vesicular Transporter in a Unilateral 6-Hydroxydopamine Rat Model of PD

2007 ◽  
Vol 27 (7) ◽  
pp. 1407-1415 ◽  
Author(s):  
Vesna Sossi ◽  
James E Holden ◽  
Geoffrey J Topping ◽  
Marie-Laure Camborde ◽  
Rich A Kornelsen ◽  
...  

This is the first in vivo determination of the vesicular monoamine transporter (VMAT2) density ( Bmax) and ligand–transporter affinity ( Kdapp) in six unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats using micro-positron emission tomography (PET) imaging with [11C]-(+)-α-dihydrotetrabenazine (DTBZ). A multiple ligand concentration transporter assay (MLCTA) was used to determine a Bmax value of 178 ± 32 pmol/mL and a Kdapp of 47.7 ± 9.3 pmol/mL for the non-lesioned side and 30.52 ± 5.84 and 43.4 ± 15.52 pmol/mL for the lesioned side, respectively. While Bmax was significantly different between the two sides, no significant difference was observed for the Kdapp. In addition to demonstrating the feasibility of in vivo Scatchard analysis in rats, these data confirm the expectation that a 6-OHDA lesion does not affect the affinity; a much simpler binding potential (BP) measure can thus be used as a marker of lesion severity (LS) in this rat model of Parkinson's disease. A transporter occupancy curve demonstrated negligible transporter occupancy (∼1%) at a specific activity (SA) of 1100 nCi/pmol (assuming an injected dose of 100 μCi/100 g), while 10% occupancy was estimated at 100 nCi/pmol. An indirect measurement indicated that the degree of occupancy as a function of SA is independent of LS. Finally, BP measurement reproducibility was assessed and found to be 11% ± 7% for the healthy and 8% ± 12% for the lesioned side. Quantitative PET results can thus be obtained even for severely lesioned animals with the striatum on one side not clearly visible provided accurate image analysis methods are used.

2012 ◽  
Vol 33 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Matthew D Walker ◽  
Katherine Dinelle ◽  
Rick Kornelsen ◽  
Siobhan McCormick ◽  
Chenoa Mah ◽  
...  

Longitudinal measurements of dopamine (DA) uptake and turnover in transgenic rodents may be critical when developing disease-modifying therapies for Parkinson's disease (PD). We demonstrate methodology for such measurements using [18F]fluoro-3,4-dihydroxyphenyl- L-alanine ([18F]FDOPA) positron emission tomography (PET). The method was applied to 6-hydroxydopamine lesioned rats, providing the first PET-derived estimates of DA turnover for this species. Control ( n = 4) and unilaterally lesioned ( n = 11) rats were imaged multiple times. Kinetic modeling was performed using extended Patlak, incorporating a kloss term for metabolite washout, and modified Logan methods. Dopaminergic terminal loss was measured via [11C]-(+)-dihydrotetrabenazine (DTBZ) PET. Clear striatal [18F]FDOPA uptake was observed. In the lesioned striatum the effective DA turnover increased, shown by a reduced effective distribution volume ratio ( EDVR) for [18F]FDOPA. Effective distribution volume ratio correlated ( r > 0.9) with the [11C]DTBZ binding potential ( BPND). The uptake and trapping rate ( kref) decreased after lesioning, but relatively less so than [11C]DTBZ BPND. For normal controls, striatal estimates were kref = 0.037 ± 0.005 per minute, EDVR = 1.07 ± 0.22 and kloss = 0.024 ± 0.003 per minute (30 minutes turnover half-time), with repeatability (coefficient of variation) ≤11%. [18F]fluoro-3,4-dihydroxyphenyl- L-alanine PET enables measurements of DA turnover in the rat, which is useful for developing novel therapies for PD.


Diagnostics ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Do-Wan Lee ◽  
Jae-Im Kwon ◽  
Chul-Woong Woo ◽  
Hwon Heo ◽  
Kyung Won Kim ◽  
...  

This study quantitatively measured the changes in metabolites in the hippocampal lesions of a rat model of cuprizone-induced demyelination as detected using in vivo 7 T proton magnetic resonance spectroscopy. Nineteen Sprague Dawley rats were randomly divided into two groups and fed a normal chow diet or cuprizone (0.2%, w/w) for 7 weeks. Demyelinated hippocampal lesions were quantitatively measured using a 7 T magnetic resonance imaging scanner. All proton spectra were quantified for metabolite concentrations and relative ratios. Compared to those in the controls, the cuprizone-induced rats had significantly higher concentrations of glutamate (p = 0.001), gamma-aminobutyric acid (p = 0.019), and glutamate + glutamine (p = 0.001); however, creatine + phosphocreatine (p = 0.006) and myo-inositol (p = 0.001) concentrations were lower. In addition, we found that the glutamine and glutamate complex/total creatine (p < 0.001), glutamate/total creatine (p < 0.001), and GABA/total creatine (p = 0.002) ratios were significantly higher in cuprizone-treated rats than in control rats. Our results showed that cuprizone-induced neuronal demyelination may influence the severe abnormal metabolism in hippocampal lesions, and these responses could be caused by microglial activation, mitochondrial dysfunction, and astrocytic necrosis.


1978 ◽  
Vol 56 (3) ◽  
pp. 535-538 ◽  
Author(s):  
S. W. Tang ◽  
H. C. Stancer ◽  
J. J. Warsh

A new strategy for measurement of brain catecholamines was tested in an animal model. [3H]Norepinephrine was infused intravenously in rabbits to label the peripheral norepinephrine pools. The specific activity of urinary 3-methoxy-4-hydroxymandelic acid was consistently higher than that for 3-methoxy-4-hydroxyphenylglycol (MHPG). Central sympathectomy with 6-hydroxydopamine abolished this difference. Using the formula we propose, it is estimated that 30–50% of urinary MHPG originates from the central nervous system.


2020 ◽  
pp. 1-10
Author(s):  
C. Tonini ◽  
M.S. Oliveira ◽  
E.B. Parmeggiani ◽  
D.A.F. Sturza ◽  
A.O. Mallmann ◽  
...  

The inclusion of anti-mycotoxin additives (AMA) in the diet of production animals has been widely used to avoid mycotoxin exposure. In order to confirm the efficacy of such products in vivo, measurement of mycotoxins and/or their metabolites in biological fluids is preconized. This study aimed at determining the serological biomarkers of zearalenone (ZEN), α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol (β-ZAL) and zearalanone, to evaluate the efficacy of an AMA in beef heifers. The trial lasted 37 days: 11 days of adaptation, 21 days of actual experiment, and 5 days of regression. Twenty-four heifers were randomly assigned to receive one of the following treatments (n=6/group): (T1) basal diet (control); (T2) basal diet + 5 mg/kg of ZEN; (T3) basal diet + 5 mg/kg of ZEN + 2.5 kg/t of AMA; and (T4) basal diet + 5 mg/kg of ZEN + 5.0 kg/t of AMA. Blood sampling was performed on different days after the diet was given. The samples were centrifuged to obtain the blood serum, and then analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). β-ZAL was detected above the limit of quantification both in the unconjugated (>0.60 ng/ml) and conjugated (>0.90 ng/ml) forms. The remaining metabolites presented concentrations under the limit of detection. In the efficacy evaluation of the AMA, there was no significant difference (P>0.05) between the treatments with and without additive at the tested levels of inclusion. Thus, β-ZAL may be employed as a biomarker of ZEN exposure via diet to evaluate the efficacy of an AMA through serological parameters. The technique applied in this study proved to be an adequate alternative for in vivo confirmation of the efficacy of products in adsorbing the toxin.


1994 ◽  
Vol 14 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Marc Laruelle ◽  
Anissa Abi-Dargham ◽  
Mohammed S. AI-Tikriti ◽  
Ronald M. Baldwin ◽  
Yolanda Zea-Ponce ◽  
...  

In vivo benzodiazepine receptor equilibrium dissociation constant, KD, and maximum number of binding sites, Bmax, were measured by single photon emission computerized tomography (SPECT) in three baboons. Animals were injected with a bolus followed by a constant i.v. infusion of the high affinity benzodiazepine ligand [123I]iomazenil. Plasma steady-state concentration and receptor–ligand equilibrium were reached within 2 and 3 h, respectively, and were sustained for the duration (4–9 h) of the experiments (n = 15). At the end of the experiments, a receptor saturating dose of flumazenil (0.2 mg/kg) was injected to measure nondisplaceable activity. Experiments were carried out at various levels of specific activity, and Scatchard analysis was performed for derivation of the KD (0.59 ± 0.09 n M) and Bmax (from 126 n M in the occipital region to 68 n M in the striatum). Two animals were killed and [125I]iomazenil Bmax and KD were measured at 22 and 37°C on occipital homogenate membranes. In vitro values of Bmax (114 ± 33 n M) and 37°C KD (0.66 ± 0.16 n M) were in good agreement with in vivo values measured by SPECT. This study demonstrates that SPECT can be used to quantify central neuroreceptors density and affinity.


2006 ◽  
Vol 84 (8-9) ◽  
pp. 903-912 ◽  
Author(s):  
Sarah J. Canyon ◽  
Geoffrey P. Dobson

We have previously shown that an intravenous infusion of adenosine and lidocaine (AL) solution protects against death and severe arrhythmias and reduces infarct size in the in vivo rat model of regional ischemia. The aim of this study was to examine the relative changes of myocardial high-energy phosphates (ATP and PCr) and pH in the left ventricle during ischemia–reperfusion using 31P NMR in AL-treated rats (n = 7) and controls (n = 6). The AL solution (A: 305 μg·(kg body mass)–1·min–1; L: 608 μg·(kg body mass)–1·min–1) was administered intravenously 5 min before and during 30 min coronary artery ligation. Two controls died from ventricular fibrillation; no deaths were recorded in AL-treated rats. In controls that survived, ATP fell to 73% ± 29% of baseline by 30 min ischemia and decreased further to 68% ± 28% during reperfusion followed by a sharp recovery at the end of the reperfusion period. AL-treated rats maintained relatively constant ATP throughout ischemia and reperfusion ranging from 95% ± 6% to 121% ± 10% of baseline. Owing to increased variability in controls, these results were not found to be significant. In contrast, control [PCr] was significantly reduced in controls compared with AL-treated rats during ischemia at 10 min (68% ± 7% vs. 99% ± 6%), at 15 min (68% ± 10% vs. 93% ± 2%), and at 20 min (67% ± 15% vs. 103% ± 5%) and during reperfusion at 10 min (56% ± 22% vs. 99% ± 7%), at 15 min (60% ± 10% vs. 98% ± 7%), and at 35 min (63% ± 14% vs. 120% ± 11%) (p < 0.05). Interestingly, changes in intramyocardial pH between each group were not significantly different during ischemia and fell by about 1 pH unit to 6.6. During reperfusion, pH in AL-treated rats recovered to baseline in 5 min but not in controls, which recovered to only around pH 7.1. There was no significant difference in the heart rate, mean arterial pressure, and rate-pressure product between the controls and AL treatment during ischemia and reperfusion. We conclude that AL cardioprotection appears to be associated with the preservation of myocardial high-energy phosphates, downregulation of the heart at the expense of a high acid-load during ischemia, and with a rapid recovery of myocardial pH during reperfusion.


1997 ◽  
Vol 17 (3) ◽  
pp. 343-355 ◽  
Author(s):  
J. Delforge ◽  
L. Spelle ◽  
B. Bendriem ◽  
Y. Samson ◽  
A. Syrota

The in vivo quantification of the benzodiazepine receptor concentration in human brain using positron emission tomography (PET) and 11C-flumazenil (11C-FMZ), is usually based on a three-compartment model and on PET curves measured in a small number of large regions of interest; however, it should be interesting to estimate the receptor concentration for each pixel and to build quantified images of the receptor concentration. The main advantage is to allow screening of the receptor site localization and visual observation of the possible abnormalities. Up to now, all the methods described include complex experimental protocols, difficult to use in routine examinations. In this paper, we propose the partial-saturation approach to obtain parametric images of benzodiazepine receptor concentration and FMZ affinity. It consists of a single FMZ injection with a low specific activity, followed by Scatchard analysis. Like other parametric imaging methods, this partial-saturation approach can lead to a small percentage (<1%) of unrealistic values in receptor-poor regions; however, it is the only method that allows receptor concentration and affinity images to be obtained from a single-injection 40-min experiment without blood sampling. We also propose a second method in which the receptor concentration map is directly deduced from the PET image acquired 5 to 10 min after a partial-saturation injection. This method assumes a known and constant FMZ affinity value but requires only very simple corrections of this PET image. It is robust (negative values are never found) and quite simple to use in routine examination of patients (no blood sampling, single injection, only 10-min experiment).


1994 ◽  
Vol 267 (2) ◽  
pp. E337-E342 ◽  
Author(s):  
L. H. Young ◽  
W. Stirewalt ◽  
P. H. McNulty ◽  
J. H. Revkin ◽  
E. J. Barrett

In vivo measurement of muscle protein synthesis and its hormonal regulation is limited by the difficulty of measuring aminoacyl-tRNA specific activity (SA). We assessed the kinetics of heart and skeletal muscle phenylalanyl-tRNA labeling during continuous infusion of L-[ring-2,6-3H]phenylalanine (Phe) to fasted anesthetized rats. We measured Phe SA in arterial and femoral venous plasma, the tissue acid-soluble pool and muscle protein hydrolysates after 5 min (n = 7), 30 min (n = 6), and 90 min (n = 7). We also assessed insulin's effect on labeling of the tRNA pool and muscle protein synthesis during a hyperinsulinemic clamp (2 mU.kg-1.min-1; n = 7). Labeling of tRNA in heart reached 59 +/- 5, 67 +/- 3, and 83 +/- 3% of arterial SA at 5, 30, and 90 min of saline infusion, respectively, but only 10 +/- 5, 34 +/- 2, and 48 +/- 2% in skeletal muscle at those times (P < 0.01 vs. heart). The tRNA SA was intermediate between SA in the acid-soluble pool and arterial plasma. Femoral venous SA was 32 +/- 2% lower (P < 0.001) than arterial SA. Skeletal muscle tRNA SA was also 29 +/- 3% lower (P < 0.001) than femoral venous SA. Insulin did not alter tRNA labeling and neither heart (9.8 +/- 1.1%/day for saline vs. 8.4 +/- 1.0%/day for insulin) nor skeletal muscle (6.7 +/- 1.5%/day vs. 4.2 +/- 0.4%/day) protein synthesis. Thus labeling of phenylalanyl-tRNA occurs more rapidly in heart than in skeletal muscle and is unaffected by insulin.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document