scholarly journals Human TP53 polymorphism (rs1042522) modelled in mouse does not affect glucose metabolism and body composition

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Erwin Reiling ◽  
Ewoud N. Speksnijder ◽  
Amanda C. M. Pronk ◽  
Sjoerd A. A. van den Berg ◽  
Silvia J. W. Neggers ◽  
...  
Reproduction ◽  
2018 ◽  
Vol 156 (2) ◽  
pp. 103-119 ◽  
Author(s):  
Jacqueline M Wallace ◽  
John S Milne ◽  
Raymond P Aitken ◽  
Graham W Horgan ◽  
Clare L Adam

Low birthweight is a risk factor for later adverse health. Here the impact of placentally mediated prenatal growth restriction followed by postnatal nutrient abundance on growth, glucose metabolism and body composition was assessed in both sexes at key stages from birth to mid-adult life. Singleton-bearing adolescent dams were fed control or high nutrient intakes to induce normal or growth-restricted pregnancies respectively. Restricted lambs had ~40% reduced birthweight. Fractional growth rates were higher in restricted lambs of both sexes predominantly during suckling/juvenile phases. Thereafter, rates and patterns of growth differed by sex. Absolute catch-up was not achieved and restricted offspring had modestly reduced weight and stature at mid-adulthood necropsy (~109 weeks). Dual-energy X-ray absorptiometry revealed lower bone mineral density in restricted vs normal lambs at 11, 41, 64 and 107 weeks, with males > females from 41 weeks onwards. Body fat percentage was higher in females vs males throughout, in restricted vs normal lambs at weaning (both sexes) and in restricted vs normal females at mid-adulthood. Insulin secretion after glucose challenge was greater in restricted vs normal of both sexes at 7 weeks and in restricted males at 32 weeks. In both sexes, fasting glucose concentrations were greater in restricted offspring across the life course, while glucose area under the curve after challenge was higher in restricted offspring at 32, 60, 85 and 106 weeks, indicative of persistent glucose intolerance. Therefore, prenatal growth restriction has negative consequences for body composition and metabolism throughout the life course with the effects modulated by sex differences in postnatal growth rates, fat deposition and bone mass accrual.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2139
Author(s):  
Paulina Wasserfurth ◽  
Josefine Nebl ◽  
Jan Philipp Schuchardt ◽  
Mattea Müller ◽  
Tim Konstantin Boßlau ◽  
...  

Aging is accompanied by a progressive decline in muscle mass and an increase in fat mass, which are detrimental changes associated with the development of health conditions such as type-2 diabetes mellitus or chronic low-grade inflammation. Although both exercise as well as nutritional interventions are known to be beneficial in counteracting those age-related changes, data to which extent untrained elderly people may benefit is still sparse. Therefore, a randomized, controlled, 12-week interventional trial was conducted in which 134 healthy untrained participants (96 women and 38 men, age 59.4 ± 5.6 years, body mass index (BMI) 28.4 ± 5.8 kg/m2) were allocated to one of four study groups: (1) control group with no intervention (CON); (2) 2×/week aerobic and resistance training only (EX); (3) exercise routine combined with dietary counseling in accordance with the guidelines of the German Nutrition Society (EXDC); (4) exercise routine combined with intake of 2 g/day oil from Calanus finmarchicus (EXCO). Body composition (bioelectrical impedance analysis), as well as markers of glucose metabolism and blood lipids, were analyzed at the beginning and the end of the study. The highest decreases in body fat were observed within the EXCO group (−1.70 ± 2.45 kg, p < 0.001), and the EXDC (−1.41 ± 2.13 kg, p = 0.008) group. Markers of glucose metabolism and blood lipids remained unchanged in all groups. Taken together results of this pilot study suggest that a combination of moderate exercise and intake of oil from Calanus finmarchicus or a healthy diet may promote fat loss in elderly untrained overweight participants.


2020 ◽  
Vol 319 (1) ◽  
pp. E203-E216
Author(s):  
Jereon Zoll ◽  
Mark N. Read ◽  
Sarah E. Heywood ◽  
Emma Estevez ◽  
Jessica P. S. Marshall ◽  
...  

Studies suggest the gut microbiota contributes to the development of obesity and metabolic syndrome. Exercise alters microbiota composition and diversity and is protective of these maladies. We tested whether the protective metabolic effects of exercise are mediated through fecal components through assessment of body composition and metabolism in recipients of fecal microbiota transplantation (FMT) from exercise-trained (ET) mice fed normal or high-energy diets. Donor C57BL/6J mice were fed a chow or high-fat, high-sucrose diet (HFHS) for 4 wk to induce obesity and glucose intolerance. Mice were divided into sedentary (Sed) or ET groups (6 wk treadmill-based ET) while maintaining their diets, resulting in four donor groups: chow sedentary (NC-Sed) or ET (NC-ET) and HFHS sedentary (HFHS-Sed) or ET (HFHS-ET). Chow-fed recipient mice were gavaged with feces from the respective donor groups weekly, creating four groups (NC-Sed-R, NC-ET-R, HFHS-Sed-R, HFHS-ET-R), and body composition and metabolism were assessed. The HFHS diet led to glucose intolerance and obesity in the donors, whereas exercise training (ET) restrained adiposity and improved glucose tolerance. No donor group FMT altered recipient body composition. Despite unaltered adiposity, glucose levels were disrupted when challenged in mice receiving feces from HFHS-fed donors, irrespective of donor-ET status, with a decrease in insulin-stimulated glucose clearance into white adipose tissue and large intestine and specific changes in the recipient’s microbiota composition observed. FMT can transmit HFHS-induced disrupted glucose metabolism to recipient mice independently of any change in adiposity. However, the protective metabolic effect of ET on glucose metabolism is not mediated through fecal factors.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Stefano Lello ◽  
Andrea Cavani

Estroprogestins (EPs) are combinations of estrogen and progestin with several actions on women’s health. The different pharmacological composition of EPs is responsible for different clinical effects. One of the most used low-dose EP associations is ethinylestradiol 20 mcg plus levonorgestrel 100 mcg in monophasic regimen (EE20/LNG100). This review summarizes clinical pharmacology, cycle control, and effects on lipid and glucose metabolism, coagulation, body weight/body composition, acne, and sexuality of EE20/LNG100. Overall, EE20/LNG100 combination is safe and well tolerated, and in several studies the incidence of adverse events in the treated group was comparable to that of the placebo group. Cycle control was effective and body weight/body composition did not vary among treated and untreated groups in most studies. The EE20/LNG100 combination shows mild or no effect on lipid and glucose metabolism. Lastly, EE20/LNG100 is associated with a low risk of venous thromboembolism (VTE). In conclusion, in the process of decision making for the individualization of EPs choice, EE20/LNG100 should be considered for its favorable clinical profile.


2001 ◽  
Vol 11 ◽  
pp. S138
Author(s):  
B. Herrmann ◽  
S. Ferdin ◽  
K. Mann ◽  
B. Saller

Sign in / Sign up

Export Citation Format

Share Document