scholarly journals Genomic contributors to atrial electroanatomical remodeling and atrial fibrillation progression: Pathway enrichment analysis of GWAS data

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Daniela Husser ◽  
Laura Ueberham ◽  
Borislav Dinov ◽  
Jedrzej Kosiuk ◽  
Jelena Kornej ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167008 ◽  
Author(s):  
Daniela Husser ◽  
Petra Büttner ◽  
Laura Ueberham ◽  
Borislav Dinov ◽  
Philipp Sommer ◽  
...  

2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qinghong Shi ◽  
Hanxin Yao

Abstract Background Our study aimed to investigate signature RNAs and their potential roles in type 1 diabetes mellitus (T1DM) using a competing endogenous RNA regulatory network analysis. Methods Expression profiles of GSE55100, deposited from peripheral blood mononuclear cells of 12 T1DM patients and 10 normal controls, were downloaded from the Gene Expression Omnibus to uncover differentially expressed long non-coding RNAs (lncRNAs), mRNAs, and microRNAs (miRNAs). The ceRNA regulatory network was constructed, then functional and pathway enrichment analysis was conducted. AT1DM-related ceRNA regulatory network was established based on the Human microRNA Disease Database to carry out pathway enrichment analysis. Meanwhile, the T1DM-related pathways were retrieved from the Comparative Toxicogenomics Database (CTD). Results In total, 847 mRNAs, 41 lncRNAs, and 38 miRNAs were significantly differentially expressed. The ceRNA regulatory network consisted of 12 lncRNAs, 10 miRNAs, and 24 mRNAs. Two miRNAs (hsa-miR-181a and hsa-miR-1275) were screened as T1DM-related miRNAs to build the T1DM-related ceRNA regulatory network, in which genes were considerably enriched in seven pathways. Moreover, three overlapping pathways, including the phosphatidylinositol signaling system (involving PIP4K2A, INPP4A, PIP4K2C, and CALM1); dopaminergic synapse (involving CALM1 and PPP2R5C); and the insulin signaling pathway (involving CBLB and CALM1) were revealed by comparing with T1DM-related pathways in the CTD, which involved four lncRNAs (LINC01278, TRG-AS1, MIAT, and GAS5-AS1). Conclusion The identified signature RNAs may serve as important regulators in the pathogenesis of T1DM.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shams Tabrez ◽  
Mohammed Razeeth Shait Mohammed ◽  
Nasimudeen R. Jabir ◽  
Mohammad Imran Khan

Abstract Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality around the world. Early diagnosis of CVD could provide the opportunity for sensible management and better clinical outcome along with the prevention of further progression of the disease. In the current study, we used an untargeted metabolomic approach to identify possible metabolite(s) that associate well with the CVD and could serve either as therapeutic target or disease-associated metabolite. We identified 26 rationally adjusted unique metabolites that were differentially present in the serum of CVD patients compared with healthy individuals, among them 15 were found to be statistically significant. Out of these metabolites, we identified some novel metabolites like UDP-l-rhamnose and N1-acetylspermidine that have not been reported to be linked with CVD directly. Further, we also found that some metabolites like ethanolamide, solanidine, dimethylarginine, N-acetyl-l-tyrosine, can act as a discriminator of CVD. Metabolites integrating pathway enrichment analysis showed enrichment of various important metabolic pathways like histidine metabolism, methyl histidine metabolism, carnitine synthesis, along with arginine and proline metabolism in CVD patients. Our study provides a great opportunity to understand the pathophysiological role and impact of the identified unique metabolites and can be extrapolated as specific CVD specific metabolites.


2017 ◽  
Vol 20 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Qian Yang ◽  
Shuyuan Wang ◽  
Enyu Dai ◽  
Shunheng Zhou ◽  
Dianming Liu ◽  
...  

2021 ◽  
Author(s):  
Yong Liu ◽  
Sheng Nan Cui ◽  
Meng Yao Duan ◽  
Zhi Li Dou ◽  
Yi Zhen Li ◽  
...  

Abstract Background: The relationship between psoriasis and hepatitis C was previously controversial, so our purpose is to investigate this connection.Methods: We conducted a systematic review of the case-control, cross-sectional and cohort studies examining the association between psoriasis and hepatitis C in PubMed, EMBASE and Cochrane library databases and investigated the overlapping genes between psoriasis targets and hepatitis C targets using bioinformatics analysis. Based on overlapping genes and hub nodes, we also constructed the protein-protein interaction (PPI) network and module respectively, followed by the pathway enrichment analysis. Results: We included 11 publications that reported a total of 11 studies (8 cross-sectional and 3 case-control). The case–control and cross-sectional studies included 25,047 psoriasis patients and 4,091,631 controls in total. Psoriasis was associated with a significant increase of prevalent hepatitis C (OR 1.72; 95% confidence interval [CI] (1.17-2.52)). A total of 389 significant genes were common to both hepatitis C and psoriasis, which mainly involved IL6, TNF, IL10, ALB, STAT3 and CXCL8. The module and pathway enrichment analyses showed that the common genes had the potential to influence varieties of biological pathways, including the inflammatory response, cytokine activity, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, which play an important role in the pathogenesis of hepatitis C and psoriasis.Conclusion: Patients with psoriasis display increased prevalence of hepatitis C and the basic related mechanisms between hepatitis C and psoriasis had been preliminarily clarified.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
Anastasia N. Vaganova ◽  
Savelii R. Kuvarzin ◽  
Anastasia M. Sycheva ◽  
Raul R. Gainetdinov

Trace amine-associated receptors (TAARs) interact with amine compounds called “trace amines” which are present in tissues at low concentrations. Recently, TAARs expression in neoplastic tumors was reported. In this study, TAARs expression was analyzed in public RNAseq datasets in nevi and melanoma samples and compared to the expression of dopamine receptors (DRDs) that are known to be involved in melanoma pathogenesis. It was found that all DRDs and TAARs are expressed in nevi at comparable levels. Differential expression analysis demonstrated the drastic decrease of TAAR1, TAAR2, TAAR5, TAAR6, and TAAR8 expression in melanomas compared to benign nevi with only TAAR6, TAAR8, and TAAR9 remaining detectable in malignant tumors. No association of TAARs expression levels and melanoma clinicopathological characteristics was observed. TAARs co-expressed genes in melanoma and nevi were selected by correlation values for comparative pathway enrichment analysis between malignant and benign neoplasia. It was found that coexpression of TAARs with genes inquired in neurotransmitter signaling is lost in melanoma, and tumor-specific association of TAAR6 expression with the mTOR pathway and inflammatory signaling is observed. It is not excluded that TAARs may have certain functions in melanoma pathogenesis, the significance of which to tumor progression is yet to be understood.


2021 ◽  
Author(s):  
Perumal Jayaraj ◽  
Seema Sen ◽  
Pranjal Vats ◽  
Shefali Dahiya ◽  
Vanshika Mohindroo

Background: Eyelid BCC accounts for more than 90% of Eyelid malignant neoplasms. Various aberrant signalling pathways and genes in Non-Ocular BCC have been found whereas Eyelid bcc remains elusive. Objective: This study aims to find the common DEGs of Eyelid and Non-Ocular BCC using bioinformatic analysis and text mining to gain more insights into the molecular aspects common to both BCC non-ocular and Eyelid BCC and to identify common potential prognostic markers. Material and method: The Gene Expression profiles of Eyelid BCC (GSE103439) and Non-Ocular BCC (GSE53462) were obtained from the NCBI GEO database followed by identification of common DEGs. Protein-Protein interaction and Pathway Enrichment analysis of these screened genes was done using bioinformatic tools like STRING, Cytoscape and BiNGO, DAVID, KEGG respectively. Results: A total of 181 genes were found common in both datasets. A PPI network was formed for the screened genes and 20 HUB genes were sorted which included CTNNB1, MAPK14, BTRC, EGFR, ADAM17. Pathway enrichment of HUB genes showed that they were dysregulated in carcinogenic and apoptotic pathways that seem to play a role in the progression of both the BCC. Conclusion: The result and findings of bioinformatic analysis highlighted the molecular pathways and genes enriched in both Eyelid BCC as well as Non- Ocular BCC. The identified pathways should be studied further to recognise common molecular events that would lead to the progression of BCC. This may provide a window to explore the prognostic and therapeutic strategies common to both BCC. Keywords: Basal cell carcinoma (BCC), Cancer, Microarray, Ophthalmology, Tumour marker


Sign in / Sign up

Export Citation Format

Share Document