scholarly journals Cerium(iv) oxide nanoparticles induce sublethal changes in honeybees after chronic exposure

2017 ◽  
Vol 4 (12) ◽  
pp. 2297-2310 ◽  
Author(s):  
Monika Kos ◽  
Anita Jemec Kokalj ◽  
Gordana Glavan ◽  
Gregor Marolt ◽  
Primož Zidar ◽  
...  

Oral exposure to up to 500 mg L−1 nCeO2 was sublethal for honeybees but altered the cholinergic system and induced other physiological responses.

2021 ◽  
Vol 09 ◽  
Author(s):  
Mark Sergeevich Stepankov ◽  
Marina Aleksandrovna Zemlyanova ◽  
Nina Vladimirovna Zaitseva ◽  
Anna Mikhailovna Ignatova ◽  
Alena Evgenievna Nikolaeva

Background: Currently, the range of copper (II) oxide nanoparticles’ (CuO NPs) applications is expanding and the global production of CuO NPs is increasing. In this regard, the risk of exposure of the population to this nanomaterial increases. Objective: The aim of the study is to investigate the patterns of bioaccumulation and toxic effects of CuO NPs after multiple oral exposures. Methods: The particle size was determined by scanning electron microscopy and dynamic laser light scattering. Specific surface area was measured by the method of Brunauer, Emmett, Teller. Total pore volume - by the method of Barrett, Joyner, Khalenda. Twenty-four hours after the final exposure, blood samples were taken for biochemical and hematological analysis, and internal organs were taken to determine their mass, copper concentration and histological analysis. The study was carried out in comparison with copper (II) oxide microparticles (CuO MPs). Results: In terms of size, surface area, and pore volume, the studied copper (II) oxide sample is a nanomaterial. The median lethal dose of CuO NPs was 13187.5 mg/kg of body weight. Bioaccumulation occurs in the stomach, blood, intestines, liver, lungs, kidneys and brain. Pathomorphological changes in the liver are manifested in the form of necrosis, degeneration, hepatitis; kidney - proliferation of mesangial cells, dystrophy; stomach - gastritis; small intestine - hyperplasia, enteritis; large intestine - colitis; lungs - hyperplasia, abscess, pneumonia, bronchitis, vasculitis. Clumps of brown pigment were detected in the kidneys, stomach and lungs. The mass of the stomach and intestines increased, the mass of the liver, kidneys and lungs decreased. Pathomorphological changes in organs are likely to cause an increase in the levels of activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, amylase, malondialdehyde concentration and a decrease in plasma antioxidant activity. The proportion of segmented neutrophils, the number of leukocytes are raised, the proportion of lymphocytes is reduced. Conclusion: The degree of bioaccumulation and toxicity of CuO NPs are more expressed in relation to CuO MPs.


2019 ◽  
Vol 13 (7) ◽  
pp. 977-989 ◽  
Author(s):  
Avnika Singh Anand ◽  
Urmila Gahlot ◽  
Dipti N. Prasad ◽  
Amitabh ◽  
Ekta Kohli

Author(s):  
Xiping Yi ◽  
Shuaishuai Xu ◽  
Feiyu Huang ◽  
Cong Wen ◽  
Shuilin Zheng ◽  
...  

Microcystin-LR (MC-LR) is a potent hepatotoxin, but a few studies suggested that it might also induce nephrotoxicity. However, nephrotoxicity induced by prolonged oral exposure to MC-LR is unknown. The aim of this study was to evaluate the potential influence of MC-LR on the kidney in mice following chronic exposure to MC-LR. In this study, we evaluated the nephrotoxicity of MC-LR in mice drinking water at different concentrations (1, 30, 60, 90, and 120 μg/L) for 6 months for the first time. The results showed that the kidney weights and the kidney indexes of mice were not altered in the MC-LR treated mice, compared with the control group. In addition, the renal function indicators revealed that the serum creatinine (SCr) levels were not significant changes after exposure to MC-LR. The blood urea nitrogen (BUN) levels were markedly decreased after exposure to 90 and 120 μg/L MC-LR for 3 months. The BUN levels were lower than that of the control group after exposure to 120 μg/L MC-LR for 6 months. The histopathological investigation revealed enlarged renal corpuscles, widened of kidney tubules, and lymphocyte infiltration in the interstitial tissue and the renal pelvis after exposure to 60, 90, and 120 μg/L MC-LR. Consequently, our results suggested that long-term exposure to MC-LR might be one important risk of kidney injury, which will provide important clues for the prevention of renal impairment.


Toxicology ◽  
2009 ◽  
Vol 261 (1-2) ◽  
pp. 59-67 ◽  
Author(s):  
Helene Bensoussan ◽  
Line Grancolas ◽  
Bernadette Dhieux-Lestaevel ◽  
Olivia Delissen ◽  
Claire-Marie Vacher ◽  
...  

Mutagenesis ◽  
2017 ◽  
Vol 32 (4) ◽  
pp. 417-427 ◽  
Author(s):  
Naresh Dumala ◽  
Bhanuramya Mangalampalli ◽  
Srinivas Chinde ◽  
Srinivas Indu Kumari ◽  
Mohammad Mahoob ◽  
...  

1968 ◽  
Vol 10 (1) ◽  
pp. 17-35 ◽  
Author(s):  
A. R. Sykes ◽  
J. Slee

Closely shorn Scottish Blackface female sheep aged 9–14 months, half on high plane and half on low plane nutrition, were subjected, in climate chambers, to two short acute cold exposures down to −20°C. The acute exposures were separated by two weeks chronic exposure to a moderately subcriticai temperature (+8°C) or to a thermoneutral temperature (+30°C). Most of the sheep showed a greater resistance to body cooling at the second acute exposure (Slee and Sykes, 1967). This increased resistance to hypothermia, defined as acclimatization, was apparently influenced more by acute than by chronic cold exposure. The present paper deals with changes in skin temperature, heart rate, shivering intensity and skinfold thickness which also resulted from cold exposure, and accompanied acclimatization.After acute cold exposure followed by chronic exposure to +8°C the following changes in these parameters were observed:1. Extremity skin temperatures and heart rates were consistently increased at thermoneutral ambient temperatures.2. Vasoconstriction of the extremities and increased heart rate, both of which normally occur during the early stages of cold exposure, were delayed.3. Heart rates at sub-zero ambient temperatures were increased.4. Cold-induced vasodilatation at sub-zero ambient temperatures was increased.After acute cold treatment alone the intensity of shivering during the second acute exposure was reduced. Also the onset of foot vasoconstriction was slightly delayed.A highly significant relationship was observed between shivering intensity and heart rate during cold exposure.Plane of nutrition had less effect on the physiological responses to cooling than did previous cold experience.It was suggested in discussion that the physiological responses associated with acclimatization were: elevated basal metabolic rate, delayed onset of vasoconstriction and delayed metabolic response to cold, and consequent lowering of the critical temperature. Summit metabolism was also increased and shivering intensity reduced during acute cold exposure. Some of these responses could have resulted from either acute or chronic moderate cold exposure. However their persistence, once induced, appeared to depend upon continued exposure to moderate cold.


Sign in / Sign up

Export Citation Format

Share Document