scholarly journals Competitive biosorption behavior of Pt(iv) and Pd(ii) by Providencia vermicola

RSC Advances ◽  
2017 ◽  
Vol 7 (51) ◽  
pp. 32229-32235 ◽  
Author(s):  
Hang Xu ◽  
Ling Tan ◽  
Haigang Dong ◽  
Jia He ◽  
Xinxing Liu ◽  
...  

Biosorption is an effective way to recover or remove metal ions from wastewater; however, the biosorption process in a multiple metal ion solution is still unclear.

2019 ◽  
Author(s):  
Chem Int

The potential of plantain (Musa paradisiaca) flower to remove Cd(II), Pb(II) and Zn(II) from aqueous solutions has been investigated under different process parameters like pH, contact time, biomass dose and initial metal ion concentration. The optimum pH for the biosorption of each of the metal ions is pH 6. The kinetic data obtained were subjected to four kinetic models, among which the pseudo-second order kinetic model was found to be the best model that describes the biosorption of each of the metal ions. The equilibrium sorption data were fitted into Langmuir, Freundlich, Temkin and D-R isotherms. In each case, the Freundlich isotherm model gave the best fit giving the sorption intensity (n) values of 1.17, 0.91 and 0.90 which indicate favourable sorption of Cd(II), Pb(II) and Zn(II), respectively. The heat of the sorption process was estimated from Temkin Isotherm model and the mean free energy was estimated from D-R isotherm model to be 312.81Jmol-1, 223.61Jmol-1 and 316.55Jmol-1 for Cd(II), Pb(II) and Zn(II), respectively. Thermodynamically, the biosorption of each of the metal ions is endothermic and the order of spontaneity of the biosorption process being Cd(II) > Zn(II) > Pb(II). Similarly, positive change in entropy was observed for each, the order of disorderliness is Cd(II) > Zn(II) = Pb(II).


2019 ◽  
Author(s):  
Chem Int

The equilibrium, kinetics, and thermodynamics of the biosorption of Pb(II), Cd(II) and Zn(II) onto groundnut (Arachis hypogaea) shell were investigated under various physicochemical parameters. Optimisation studies were carried out using batch biosorption studies. The extent of the metal ion biosorption increased with increase in solution pH, initial metal ion concentration, dosage of biosorbent and contact time but decreased with the temperature of the system. The biosorption of each of the metal ions was found to be pH-dependent. Kinetic study showed that the metal ions biosorption process followed the pseudo-second-order kinetic model. The sorption of each metal ion was analysed with Freundlich and Langmuir isotherm models, in each case, the equilibrium data were better represented by Freundlich isotherm model. Thermodynamically, parameters such as standard Gibbs free energy (ΔG˚), standard enthalpy (ΔH˚), standard entropy (ΔS˚) and the activation energy (A) were calculated. The biosorption of each metal ion was spontaneous and the order of spontaneity of the biosorption process being Cd(II) > Zn(II) > Pb(II). Similarly, change in entropy was observed for each and the order of disorder is Cd(II) > Zn(II) > Pb(II).


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Salman ◽  
Rabia Rehman ◽  
Umar Farooq ◽  
Anum Tahir ◽  
Liviu Mitu

Sorghum bicolor (S.B.) is used in this work for preparing chemically modified adsorbent for toxic metal ions, i.e., cadmium(II) and copper(II). Thiourea is selected for chemical modification of this plant waste by microwave solid fusion methodology, so that its chelating ability for metal ions can be enhanced in both acidic and basic conditions, in a cheaper and quicker way. Characterization was carried out by different physiochemical means using FT-IR, SEM, etc. An increase in pHpzc value was observed in TSB, which is confirmed by FT-IR analysis. The effect of biosorption process parameters was also studied and found that maximum removal of these toxic ions occurred in slightly acidic pH (5-6) conditions, following pseudo-second-order kinetic model. Boyd plots indicated that film dispersion mode was the rate-determining step. Langmuir model indicated that the maximum metal ion removal capacity of TSB was 17.241 mg/g and 15.151 mg/g for cadmium(II) and copper(II) ions. So, TSB can be used on a larger scale for toxic metal ion removal by Sorghum bicolor waste in a cleaner way.


2018 ◽  
Vol 15 (3) ◽  
pp. 567-575
Author(s):  
K.G. Akpomie ◽  
C.C. Ezeofor ◽  
S.I. Eze ◽  
C.N. Okey ◽  
P.I. Ebiem-Kenechukwu

The biosorption of Cd (II), As (III) and Pb (II) ions from solution utilizing Vigna unguiculata leaf powders (VULP) as a low cost biosorbent was studied. The influence of temperature, metal ion concentration, biosorbent dose, contact time and pH on the sequestration process was examined by batch procedure. Increase in the biosorption of the three metal ions with increased pH and biosorbent dosage was obtained in this study.Equilibrium contact time of 20, 40 and 50min was achieved for Cd(II), As (III) and Pb(II) ions and biosorption was in the order As(III)> Cd(II) >Pb(II). Isotherm analysis was performed by the application of Langmuir, Freundlich, Flory-Huggins and Scatchard models. The Langmuir model gave the best fit with maximum monolayer biosorption capacity of 109.1, 105 and 119.3 mg/g for Cd (II), Pb (II) and As (III) respectively. Scatchard model confirmed a homogenous surface of VULP and monolayer biosorption of metal ions. Pseudo second order model showed the best fit compared to pseudo first order, Elovich and Banghams kinetic models according to kinetic analysis. Thermodynamics study revealed a feasibly, spontaneous exothermic biosorption process. The result showed good potentials of VULP as suitable cheap biosorbent for attenuation of Cd (II), Pb(II) and As (III) ions from polluted wastewaters.


2019 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Serly Tandigau ◽  
Nursiah La Nafie ◽  
Prastawa Budi

Arabica coffee fruit peel is a material that is abundant and cheap. The material has been used as an adsorbent in the biosorption process for the removal of metal ions of Ni(II) from wastewater. Biosorption of Ni(II) ion by dragon fruit peel was done on the variation of particle size, variation of contact time, pH and concentration. Adsorption capacity was studied by both isotherm adsorptions of Langmuir and Freundlich. The concentration of metal ions Ni(II) before and after adsorption was determined using Atomic Absorption Spectrophotometer (AAS). Results showed that the optimum time was 50 minutes and the optimum pH was 6 with 120 mesh of particle size of biosorption. Results showed that the biosorption of Ni(II) ion using Arabica coffee fruit peel fullfilled the isotherm Langmuir model with the biosorption capacity (Qo) of 18.86 mg/g. The functional group involved in metal ion biosorption of Ni(II) by the peel of coffee fruit is a hydroxyl group (-OH). 


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2019 ◽  
Vol 9 (2) ◽  
pp. 151-162
Author(s):  
Shveta Acharya ◽  
Arun Kumar Sharma

Background: The metal ions play a vital role in a large number of widely differing biological processes. Some of these processes are quite specific in their metal ion requirements. In that only certain metal ions, in specific oxidation states, can full fill the necessary catalytic or structural requirement, while other processes are much less specific. Objective: In this paper we report the binding of Mn (II), Ni (II) and Co (II) with albumin are reported employing spectrophotometric and pH metric method. In order to distinguish between ionic and colloidal linking, the binding of metal by using pH metric and viscometric methods and the result are discussed in terms of electrovalent and coordinate bonding. Methods: The binding of Ni+2, Co+2 and Mn+2 ions have been studied with egg protein at different pH values and temperatures by the spectrometric technique. Results: The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found to be at the maximum at lower pH and at lower temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with these metal ions. Statistical effects seem to be more significant at lower Ni+2, Co+2 and Mn+2 ions concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant. Conclusion: The pH metric as well as viscometric data provided sufficient evidence about the linking of cobalt, nickel and manganese ions with the nitrogen groups of albumin. From the nature and height of curves in the three cases it may be concluded that nickel ions bound strongly while the cobalt ions bound weakly.


2007 ◽  
Vol 72 (7) ◽  
pp. 908-916 ◽  
Author(s):  
Payman Hashemi ◽  
Hatam Hassanvand ◽  
Hossain Naeimi

Sorption and preconcentration of Cu2+, Zn2+ and Fe3+ on a salen-type Schiff base, 2,2'- [ethane-1,2-diylbis(nitrilomethylidyne)]bis(2-methylphenol), chemically immobilized on a highly crosslinked agarose support, were studied. Kinetic studies showed higher sorption rates of Cu2+ and Fe3+ in comparison with Zn2+. Half-times (t1/2) of 31, 106 and 58 s were obtained for sorption of Cu2+, Zn2+ and Fe3+ by the sorbent, respectively. Effects of pH, eluent concentration and volume, ionic strength, buffer concentration, sample volume and interferences on the recovery of the metal ions were investigated. A 5-ml portion of 0.4 M HCl solution was sufficient for quantitative elution of the metal ions from 0.5 ml of the sorbent packed in a 6.5 mm i.d. glass column. Quantitative recoveries were obtained in a pH range 5.5-6.5 for all the analytes. The volumes to be concentrated exceeding 500 ml, ionic strengths as high as 0.5 mol l-1, and acetate buffer concentrations up to 0.3 mol l-1 for Zn2+ and 0.4 mol l-1 for Cu2+ and Fe3+ did not have any significant effect on the recoveries. The system tolerated relatively high concentrations of diverse ions. Preconcentration factors up to 100 and detection limits of 0.31, 0.16 and 1.73 μg l-1 were obtained for Cu2+, Zn2+ and Fe3+, respectively, for their determination by a flame AAS instrument. The method was successfully applied to the metal ion determinations in several river water samples with good accuracy.


2020 ◽  
Vol 39 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Xian Zheng ◽  
Wenyu Cheng ◽  
Chendong Ji ◽  
Jin Zhang ◽  
Meizhen Yin

Abstract Metal ions are widely present in biological systems and participate in many critical biochemical processes such as material transportation, energy conversion, information transmission and metabolic regulation, making them indispensable substance in our body. They can cause health problems when deficiency or excess occurs. To understand various metabolic processes and facilitate diseases diagnosis, it is very important to measure the content and monitor the distribution of metal ions in individual cells, tissues and whole organisms. Among the various methods for metal ion detection, fluorescent sensors with organic dyes have attracted tremendous attention due to many advantages such as high fluorescence quantum yield, facile modification approaches and biocompatibility in addition to operation ease, high sensitivity, fast detection speed, and real-time detection. This review summarizes the recent progress on the detection and imaging of the metal ions in biological systems including Na+, K+, Ca2+, Mg2+, Fe2+/Fe3+, Zn2+, and Cu2+ provides an opinion on remaining challenges to be addressed in this field.


Sign in / Sign up

Export Citation Format

Share Document