scholarly journals Improvement of high-glucose and insulin resistance of chromium malate in 3T3-L1 adipocytes by glucose uptake and insulin sensitivity signaling pathways and its mechanism

RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 114-127 ◽  
Author(s):  
Weiwei Feng ◽  
Yongchao Liu ◽  
Fan Fei ◽  
Yao Chen ◽  
Yangyang Ding ◽  
...  

Chromium malate could increase the related protein and mRNA levels in 3T3-L1 adipocytes with insulin resistant. Pretreatment with the inhibitor completely/partially inhibited the GLUT-4 and Irs-1 proteins and mRNA expression compared to model group.

2006 ◽  
Vol 100 (5) ◽  
pp. 1467-1474 ◽  
Author(s):  
Jong Sam Lee ◽  
Srijan K. Pinnamaneni ◽  
Su Ju Eo ◽  
In Ho Cho ◽  
Jae Hwan Pyo ◽  
...  

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3619
Author(s):  
Małgorzata Małodobra-Mazur ◽  
Dominika Lewoń ◽  
Aneta Cierzniak ◽  
Marta Okulus ◽  
Anna Gliszczyńska

Background: Insulin resistance (IR) is a condition in which the physiological amount of insulin is insufficient to evoke a proper response of the cell, that is, glucose utilization. Metformin is the first choice for therapy, thanks to its glycemic efficacy and general tolerability. In addition, various natural compounds from plant extracts, spices, and essential oils have been shown to provide health benefits regarding insulin sensitivity. In the present study, we analyzed the effect of phospholipid derivatives of selected natural aromatic acids on insulin action and their potential use to overcome insulin resistance. Methods: The 3T3-L1 fibroblasts were differentiated into mature adipocytes; next, insulin resistance was induced by palmitic acid (16:0). Cells were further cultured with phenophospholipids at appropriate concentrations. To assess insulin sensitivity, we measured the insulin-stimulated glucose uptake, using a glucose uptake test. Results: We showed that cinnamic acid (CA) and 3-methoxycinnamic acid (3-OMe-CA) restored the proper insulin response. However, 1,2-dicinnamoyl-sn-glycero-3-phosphocholine (1,2-diCA-PC) and 1-cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-CA-2-PA-PC) improved insulin sensitivity in insulin-resistant adipocytes even stronger, exhibiting more beneficial effects. Conclusions: The binding of aromatic acids to phosphatidylcholine increases their beneficial effect on insulin sensitivity in adipocytes and expands their potential practical application as nutraceutical health-promoting agents.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Prem Sharma ◽  
Jennie Bever ◽  
Scott Heximer ◽  
Carmen Dessauer ◽  
Jerrold M Olefsky

Background: Insulin resistance is the hallmark of type 2 diabetes and is a known risk factor for the development of cardiovascular diseases. We have determined that overexpression of a GTPase-activating protein, RGS2 decreases insulin sensitivity. This study describes RGS2 regulation of insulin signaling pathways in order to assess whether this information can be used to reverse insulin insensitivity in diabetes. Hypothesis, Methods and Results: RGS2 protein levels were elevated 3 to 5-fold in white adipose tissues from ob/ob and high fat diet induced Insulin Resistant mice. Further, RGS2 protein is elevated in insulin resistant 3T3-L1 adipocytes treated chronically with either insulin, ET-1, or TNF-aplha. Further, SiRNA knockdown of endogenous RGS2 protein increases basal, insulin independent and insulin-dependent GLUT4 translocation. We hypothesized that the RGS2 regulatory system is defective/overactive in insulin resistance, and that a modulation of this regulatory system by RGS2 inhibition would improve insulin sensitivity. Thus, we determined the mechanisms whereby RGS2 modulates insulin sensitivity in 3T3-L1 adipocytes; focusing on insulin-regulated G-protein/PI3-K pathways leading to GLUT4 translocation and glucose uptake; utilizing adenoviruses over-expressing wild-type and mutants RGS2, as well as by siRNA-mediated knock down of endogenous RGS2. We overexpressed the Wild-Type (WT), GTPase defective (GD), and plasma membrane translocation defective (TD) RGS2 proteins in 3T3-L1 adipocytes. Overexpression of WT RGS2 leads to ~ 50% inhibition of insulin induced 2-DOG uptake, without affecting IR Tyr phosphorylation. RGS2 constitutively associates with Galpha/q11, and prevent its Tyr phosphorylation and activation by insulin. Interestingly, insulin-stimulated PKClambda phosphorylation was completely blocked by RGS2, whereas, AKT phosphorylation was minimally inhibited. Neither the insulin receptor tyrosine phosphorylation nor insulin-stimulated MAPK phosphorylation was affected by RGS2. Conclusion: This study identifies a novel role of RGS2 in cellular insulin resistance by negatively regulating signaling through the Galpha/q11 pathway to glucose uptake. This research has received full or partial funding support from the American Heart Association, AHA Western States Affiliate (California, Nevada & Utah).


2018 ◽  
Vol 314 (2) ◽  
pp. E152-E164 ◽  
Author(s):  
Bryan C. Bergman ◽  
Leigh Perreault ◽  
Allison Strauss ◽  
Samantha Bacon ◽  
Anna Kerege ◽  
...  

Intramuscular triglyceride (IMTG) concentration is elevated in insulin-resistant individuals and was once thought to promote insulin resistance. However, endurance-trained athletes have equivalent concentration of IMTG compared with individuals with type 2 diabetes, and have very low risk of diabetes, termed the “athlete’s paradox.” We now know that IMTG synthesis is positively related to insulin sensitivity, but the exact mechanisms for this are unclear. To understand the relationship between IMTG synthesis and insulin sensitivity, we measured IMTG synthesis in obese control subjects, endurance-trained athletes, and individuals with type 2 diabetes during rest, exercise, and recovery. IMTG synthesis rates were positively related to insulin sensitivity, cytosolic accumulation of DAG, and decreased accumulation of C18:0 ceramide and glucosylceramide. Greater rates of IMTG synthesis in athletes were not explained by alterations in FFA concentration, DGAT1 mRNA expression, or protein content. IMTG synthesis during exercise in Ob and T2D indicate utilization as a fuel despite unchanged content, whereas IMTG concentration decreased during exercise in athletes. mRNA expression for genes involved in lipid desaturation and IMTG synthesis were increased after exercise and recovery. Further, in a subset of individuals, exercise decreased cytosolic and membrane di-saturated DAG content, which may help explain insulin sensitization after acute exercise. These data suggest IMTG synthesis rates may influence insulin sensitivity by altering intracellular lipid localization, and decreasing specific ceramide species that promote insulin resistance.


2021 ◽  
Vol 41 (1) ◽  
pp. 87-93
Author(s):  
Mei-ting Chen ◽  
Yi-ting Zhao ◽  
Li-yuan Zhou ◽  
Ming Li ◽  
Qian Zhang ◽  
...  

SummaryInsulin resistance is an essential characteristic of type 2 diabetes mellitus (T2DM), which can be induced by glucotoxicity and adipose chronic inflammation. Mesenchymal stem cells (MSCs) and their exosomes were reported to ameliorate T2DM and its complications by their immunoregulatory and healing abilities. Exosomes derived from MSCs contain abundant molecules to mediate crosstalk between cells and mimic biological function of MSCs. But the role of exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) in insulin resistance of human adipocytes is unclear. In this study, exosomes were harvested from the conditioned medium of hUC-MSCs and added to insulin-resistant adipocytes. Insulin-stimulated glucose uptake was measured by glucose oxidase/peroxidase assay. The signal pathway involved in exosome-treated adipocytes was detected by RT-PCR and Western blotting. The biological characteristics and function were compared between hUC-MSCs and human adipose-derived mesenchymal stem cells (hAMSCs). The results showed that hAMSCs had better adipogenic ability than hUC-MSCs. After induction of mature adipocytes by adipogenesis of hAMSC, the model of insulin-resistant adipocytes was successfully established by TNF-α and high glucose intervention. After exosome treatment, the insulin-stimulated glucose uptake was significantly increased. In addition, the effect of exosomes could be stabilized for at least 48 h. Furthermore, the level of leptin was significantly decreased, and the mRNA expression of sirtuin-1 and insulin receptor substrate-1 was significantly upregulated after exosome treatment. In conclusion, exosomes significantly improve insulin sensitivity in insulin-resistant human adipocytes, and the mechanism involves the regulation of adipokines.


2009 ◽  
Vol 203 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Yun Wang ◽  
Patsy M Nishina ◽  
Jürgen K Naggert

The TALLYHO/Jng (TH) mouse strain is a polygenic model for type 2 diabetes (T2D) characterized by moderate obesity, impaired glucose tolerance and uptake, insulin resistance, and hyperinsulinemia. The goal of this study was to elucidate the molecular mechanisms responsible for the reduced glucose uptake and insulin resistance in the adipose tissue of this model. The translocation and localization of glucose transporter 4 (GLUT4) to the adipocyte plasma membrane were impaired in TH mice compared to control C57BL6/J (B6) mice. These defects were associated with decreased GLUT4 protein, reduced phosphatidylinositol 3-kinase activity, and alterations in the phosphorylation status of insulin receptor substrate 1 (IRS1). Activation of c-Jun N-terminal kinase 1/2, which can phosphorylate IRS1 on Ser307, was significantly higher in TH mice compared with B6 controls. IRS1 protein but not mRNA levels was found to be lower in TH mice than controls. Immunoprecipitation with anti-ubiquitin and western blot analysis of IRS1 protein revealed increased total IRS1 ubiquitination in adipose tissue of TH mice. Suppressor of cytokine signaling 1, known to promote IRS1 ubiquitination and subsequent degradation, was found at significantly higher levels in TH mice compared with B6. Immunohistochemistry showed that IRS1 colocalized with the 20S proteasome in proteasomal structures in TH adipocytes, supporting the notion that IRS1 is actively degraded. Our findings suggest that increased IRS1 degradation and subsequent impaired GLUT4 mobilization play a role in the reduced glucose uptake in insulin resistant TH mice. Since low-IRS1 levels are often observed in human T2D, the TH mouse is an attractive model to investigate mechanisms of insulin resistance and explore new treatments.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chun Hua Sheng ◽  
Zhen Wu Du ◽  
Yang Song ◽  
Xiao Dong Wu ◽  
Yu Cheng Zhang ◽  
...  

This study is aimed to investigate the effect of human resistin on myocyte differentiation and insulin resistance. The human resistin eukaryotic expression vector was stable transfected into C2C12 myocyte cells and was transiently transfected into COS7 cells. The effects of human resistin on cell proliferation, cell cycle, and myogenic differentiation of C2C12 cells were examined. Glucose uptake assays was performed on C2C12 myotubes by using [3H] 2-deoxy-D-glucose. The mRNA levels of insulin receptor (IR) and glucose transporter 4 (GLUT4) were evaluated by semiquantitative RT-PCR. Results showed by the C2C12 cells transfected with human resistin gene compared with that without transfecting gene are as follows: (1) cell proliferation was significantly promoted, (2) after inducing differentiation, the myotube’s diameters and expression of desmin and myoglobin decreased, and (3) glucose uptake ratio was lowered and expression of IR and GLUT4 decreased. However, there was no significant difference in the glucose uptake ratio between C2C12 myotubes treated with a human resistin conditioned medium of COS7 cells and treated with control medium. These results suggest that maybe human resistin has not a direct role on insulin sensitivity of myocytes. However, maybe it impaired the insulin sensitivity of myocytes through suppressing myogenesis and stimulating proliferation of myoblasts.


2018 ◽  
Vol 108 (4) ◽  
pp. 749-758 ◽  
Author(s):  
Ele Ferrannini ◽  
Patricia Iozzo ◽  
Kirsi A Virtanen ◽  
Miikka-Juhani Honka ◽  
Marco Bucci ◽  
...  

Abstract Background Adipose tissue glucose uptake is impaired in insulin-resistant states, but ex vivo studies of human adipose tissue have yielded heterogeneous results. This discrepancy may be due to different regulation of blood supply. Objective The aim of this study was to test the flow dependency of in vivo insulin-mediated glucose uptake in fat tissues, and to contrast it with that of skeletal muscle. Design We reanalyzed data from 159 individuals in which adipose tissue depots—subcutaneous abdominal and femoral, and intraperitoneal—and femoral skeletal muscle were identified by MRI, and insulin-stimulated glucose uptake ([18F]-fluoro-2-deoxyglucose) and blood flow ([15O]-H2O) were measured simultaneously by positron emission tomography scanning. Results Individuals in the bottom tertile of whole-body glucose uptake [median (IQR) 36 (17) µmol. kg fat-free mass (kgFFM)−1 . min−1 .nM−1] displayed all features of insulin resistance compared with the rest of the group [median (IQR) 97 (71) µmol . kgFFM−1 .min−1 . nM−1]. Rates of glucose uptake were directly related to the degree of insulin resistance in all fat depots as well as in skeletal muscle. However, blood flow was inversely related to insulin sensitivity in each fat depot (all P ≤ 0.03), whereas femoral muscle blood flow was not significantly different between insulin-resistant and insulin-sensitive subjects, and was not related to insulin sensitivity. Furthermore, in subjects performing one-leg exercise, blood flow increased 5- to 6-fold in femoral muscle but not in the overlying adipose tissue. The presence of diabetes was associated with a modest increase in fat and muscle glucose uptake independent of insulin resistance. Conclusions Reduced blood supply is an important factor for the impairment of in vivo insulin-mediated glucose uptake in both subcutaneous and visceral fat. In contrast, the insulin resistance of glucose uptake in resting skeletal muscle is predominantly a cellular defect. Diabetes provides a modest compensatory increase in fat and muscle glucose uptake that is independent of insulin resistance.


2021 ◽  
Vol 11 (9) ◽  
pp. 1812-1817
Author(s):  
Jingjing Zhou ◽  
Wenjuan Zhu ◽  
Zheng Mao ◽  
Zhen Li ◽  
Xiaoqin Li ◽  
...  

Background: The objective of the research was to investigate the roles of miR-4458 in the regulation of insulin resistance in hepatic cells and to explore the underlying molecular mechanisms. Methods: The blood samples were collected from the T2D patients and the health controls, and the liver tissues were collected from the DM and control rats. The relationship between IGF1R and miR-4458 was predicted by TargetScan and verified by the dual luciferase reporter gene system. qRT-PCR was used to measure the mRNA expression of miR-4458, IGF1R, G6Pase and PEPCK. The protein expression of IGF1R, p-AKT and AKT were measured by Western blot analysis. The rat insulin ELISA Kit and glucose Uptake Colorimteric Assay Kit were used to determine the level of serum insulin and the glucose uptake. Results: miR-4458 was high expressed in T2D patients. We predicted and verified that IGF1R was a direct target of miR-4458, and the mRNA expression of IGF1R was reduced in type 2 diabetes patients. We established the diabetes model (DM) and IR HepG2 cell model, and found that the blood glucose and serum insulin levels were significantly elevated in the DM group. miR-4458 expression was up-regulated, while the expression of IGF1R and p-AKT, and p-AKT/AKT ratio were reduced in the DM group and IR HepG2 cell model. miR-4458 inhibitor and IGF1R-siRNA significantly decreased the expression of miR-4458 and IGF1R respectively. In comparison with IR+inhibitor control group, miR-4458 inhibitor increased 2-DG6P content, IGF1R expression, p-AKT expression and p-AKT/AKT ratio, reduced the expression of G6Pase and PEPCK, and all the effects were reversed by down-regulating IGF1R. Conclusion: miR-4458 regulated the insulin resistance in hepatic cells by regulating the IGF1R/PI3K/AKT signal pathway, which will be a potential target for the treatment of diabetes.


Sign in / Sign up

Export Citation Format

Share Document