Towards bridging the structure gap in heterogeneous catalysis: the impact of defects in dissociative chemisorption of methane on Ir surfaces

2021 ◽  
Vol 23 (7) ◽  
pp. 4376-4385
Author(s):  
Xueyao Zhou ◽  
Yaolong Zhang ◽  
Hua Guo ◽  
Bin Jiang

The negatively activated region in CH4 dissociation is attributed to a precursor-mediated mechanism involving surface defects.

Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 287 ◽  
Author(s):  
Marina Volosova ◽  
Sergey Grigoriev ◽  
Alexander Metel ◽  
Alexander Shein

The main problem with ceramics used in cutting tools is related to the unpredictable failures caused by the brittle fracturing of ceramic inserts, which is critical for the intermittent milling of cyclic loading. A 125-mm-diameter eight-toothed end mill, with a mechanical fastening of ceramic inserts, was used as a cutting tool for milling hardened steel (102Cr6). For the experiments, square inserts of the Al2O3 + SiC ceramic were used and compared with the samples made of Al2O3 + TiC to confirm the obtained results. The samples were coated with diamond-like coating (DLC), TiZrN, and TiCrAlN coatings, and their bending strength and adhesion were investigated. Investigations into the friction coefficient of the samples and operational tests were also carried out. The effect of smoothing the microroughness and surface defects in comparison with uncoated inserts, which are characteristic of the abrasive processing of ceramics, was investigated and analyzed. The process developed by the authors of the coating process allows for the cleaning and activation of the surface of ceramic inserts using high-energy gas atoms. The impact of these particles on the cutting edge of the insert ensures its sharpening and reduces the radius of curvature of its cutting edges.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 817
Author(s):  
Asad Syed ◽  
Lakshmi Sagar Reddy Yadav ◽  
Ali H. Bahkali ◽  
Abdallah M. Elgorban ◽  
Deshmukh Abdul Hakeem ◽  
...  

The impact of a CeO2-ZnO nanocomposite on the photocatalytic and antibacterial properties compared to bare ZnO was investigated. A CeO2-ZnO nanocomposite was synthesized using Acacia nilotica fruit extract as a novel fuel by a simple solution combustion method. The obtained CeO2-ZnO nanocomposite was confirmed structurally by XRD, FTIR, Raman and UV-DRS and morphologically by SEM/TEM analysis. The XRD pattern indicates the presence of both hexagonal Wurtzite-structured ZnO (major) and cubic-phase CeO2 (minor). FTIR shows the presence of a Ce-O-Ce vibration at 468 cm−1 and Zn-O vibration at 445 cm−1. The existence of a band at 460 cm−1 confirmed the F2g Raman-active mode of the fluorite cubic crystalline structure for CeO2. Diffused reflectance spectroscopy was used to estimate the bandgap (Eg) from Kubelka–Munk (K–M) theory which was found to be 3.4 eV. TEM analysis shows almost spherical-shaped particles, at a size of about 10–15 nm. The CeO2-ZnO nanocomposite shows a good BET specific surface area of 30 m2g−1. The surface defects and porosity of the CeO2-ZnO nanocomposite caused methylene blue (MB) dye to degrade under sunlight (88%) and UV light (92%). The CeO2-ZnO nanocomposite also exhibited considerable antibacterial activity against a pathogenic bacterial strain.


2015 ◽  
pp. 405-430 ◽  
Author(s):  
Sharifah Bee Abd Hamid ◽  
Robert Schlögl

2021 ◽  
Vol 2064 (1) ◽  
pp. 012092
Author(s):  
A E Ligachev ◽  
M V Zhidkov ◽  
S A Sorokin ◽  
G V Potemkin ◽  
Yu R Kolobov

Abstract Effect of the pulsed soft X-ray fluxes (PSXF) on the surface topography of metals (Mg and Cu) has been investigated. Soft pulse X-ray irradiation (energy quanta of 0.1-1.0 keV) were carried out on a high-current MIG generator. The sample of magnesium was located at a distance of 10 cm from the X-ray source. Since the distance to the sample significantly exceeded the size of the X-ray beam, it can be assumed that the density of the X-ray radiation flow to the magnesium sample was uniform. The duration of the radiation pulse was 100 ns, and the radiation energy density in the pulse varied from 13 to 19 J/cm2. As a result of melting under the action of PSXF of the near-surface layer of metals and subsequent solidification, a wavy relief is formed on their surface. Defects in the form of craters, which usually occur after the impact of a powerful pulsed ion flow on metals, were not detected.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Li ◽  
Qiancheng Rui ◽  
Xiwen Wang ◽  
Wei Yu

A non-equilibrium molecular dynamics simulation method is conducted to study the thermal conductivity (TC) of silicon nanowires (SiNWs) with different types of defects. The impacts of defect position, porosity, temperature, and length on the TC of SiNWs are analyzed. The numerical results indicate that SiNWs with surface defects have higher TC than SiNWs with inner defects, the TC of SiNWs gradually decreases with the increase of porosity and temperature, and the impact of temperature on the TC of SiNWs with defects is weaker than the impact on the TC of SiNWs with no defects. The TC of SiNWs increases as their length increases. SiNWs with no defects have the highest corresponding frequency of low-frequency peaks of phonon density of states; however, when SiNWs have inner defects, the lowest frequency is observed. Under the same porosity, the average phonon participation of SiNWs with surface defects is higher than that of SiNWs with inner defects.


Author(s):  
Ayomide Labulo ◽  
Elijah Temitope Adesuji ◽  
Charles Ojiefoh Oseghale ◽  
Elias Emeka Elemike ◽  
Akinola Kehinde Akinola ◽  
...  

Vertically-aligned nitrogen-doped carbon nanotubes (v-N-CNTs) were synthesized \textit{via} the chemical vapour deposition (CVD) technique. 1-ferrocenylmethyl(2-methylimidazole) was employed as the source of the Fe catalyst and was dissolved in different ratios of acetonitrile/benzophenone feedstock which served as both the carbon, nitrogen, and oxygen sources. The morphological difference in N-CNTs was as a result of increased oxygen concentration in the reaction mix and not due to water vapour formation as observed in the oxygen-free experiment, indicating specifically, the impact of oxygen. Raman and X-ray photoelectron spectroscopy (XPS) revealed surface defects and grafting of oxygen functional groups on the sidewall of N-CNTs. The FTIR data showed little or no effect as oxygen concentration increases. XPS analysis detected the type of nitrogen species (\textit{i.e.} pyridinic, pyrrolic, graphitic, or molecular nitrogen forms) incorporated in the N-CNT samples. Pyrrolic nitrogen was dominant and increased (from 8.6 to 11.8 at.\%) as oxygen concentration increases in the reaction precursor. An increase in N content was observed with the introduction of a lower concentration of oxygen, followed by a gradual decrease at higher oxygen concentration. Our result suggested that effective control of the reactant mixtures can manipulate the morphology of N-CNTs.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
James Pierce ◽  
Nathan B. Crane

Pulse thermography (PT) is a nondestructive testing method in which an energy pulse is applied to a surface while the surface temperature evolution is measured to detect sub surface defects and estimate their depth. This nondestructive test method was developed on the assumption of instantaneous surface heating, but recent work has shown that relatively long pulses can be used to accurately determine defect depth in polymers. This paper examines the impact of varying input pulse length on the accuracy of defect depth quantification as a function of the material properties. Simulations using both thermoplastics and metals show that measurement error is dependent on a nondimensionalized pulse length. The simulation results agree with experimental results for three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) components. Analysis and experiments show that defects can be accurately detected with minor modification to the standard methods as long as the pulse ends before the characteristic defect signal is detected.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
J. S. Kwame ◽  
E. Yakushina ◽  
P. Blackwell

AbstractDespite the good properties of titanium, which have drawn the interest of various industries over the years, one of the major drawbacks of this material is its poor machinability. This has largely been attributed to its low thermal conductivity and elastic modulus. The ability to attain the optimum sheet edge performance during forming is dependent on the quality of the edges produced. Also, the demanding nature of aerospace part design has provoked the interest of both industry and academia to continually explore avenues tailored at enhancing part performance. The sort of edge surface integrity produced for aerospace part fabrication thus becomes a vital consideration in the quest to ensuring prime performance of components. This work seeks to study the influence of different machining-induced surface defects on the sheet edge performance of CP-Ti (grade 2) at room temperature. Hole expansion test was used to assess the edge surface formability of CP-Ti with different machining-induced edge defects. The research found that machining-induced surface defects act as stress concentration sites during the hole expansion test and have a major impact on the material flow. Electro-discharge machined edges were observed to exhibit high edge formability compared to laser and abrasive water jet cut edges due to the impact of machining-induced microstructural changes.


1997 ◽  
Vol 487 ◽  
Author(s):  
R. Dat ◽  
F. Aqariden ◽  
W. M. Duncan ◽  
D. Chandra ◽  
H. D. Shih

AbstractSpectral ellipsometry (SE) was applied to in situ composition control of Hg1−xCdxTe grown by molecular beam epitaxy (MBE), and the impact of surface topography of the Hg1−xCdxTe layers on the accuracy of SE was investigated. Of particular importance is the presence of surface defects, such as voids in MBE- Hg1−xCdx.Te layers. While dislocations do not have any significant impact on the dielectric functions, the experimental data in this work show that MBE- Hg1−xCdxTe samples having the same composition, but different void densities, have different effective dielectric functions.


Sign in / Sign up

Export Citation Format

Share Document