scholarly journals SrFe1−xSnxO3−δ nanoparticles with enhanced redox properties for catalytic combustion of benzene

2020 ◽  
Vol 10 (18) ◽  
pp. 6342-6349
Author(s):  
Kazutaka Hashimoto ◽  
Ryoichi Otomo ◽  
Yuichi Kamiya

A series of SrFe1−xSnxO3−δ showed high catalytic activity for benzene combustion. The partial substitution of Fe with Sn increased specific surface area and accelerated redox rates of Fe, resulting in the improvement of the catalytic activity.

2021 ◽  
Vol 1036 ◽  
pp. 130-136
Author(s):  
Ting Qun Tan ◽  
Lei Geng ◽  
Yan Lin ◽  
Yan He

In order to prepare carbon nanotubes with high specific surface area, small diameter, low resistivity, high purity and high catalytic activity, the Fe-Mo/Al2O3 catalyst was prepared based on the microreactor. The influence of different Fe/Al molar ratios on the catalyst and the carbon nanotubes prepared was studied through BET, SEM, TEM and other detection methods. Studies have shown that the pore structure of the catalyst is dominated by slit pores at a lower Fe/Al molar ratio. The catalytic activity is the highest when the Fe/Al molar ratio is 1:1, reaching 74.1%. When the Fe/Al molar ratio is 1:2, the catalyst has a higher specific surface area, the maximum pore size is 8.63 nm, and the four-probe resistivity and ash content of the corresponding carbon nanotubes are the lowest. The higher the proportion of aluminum, the higher the specific surface area of the catalyst and the carbon nanotubes, and the finer the diameter of the carbon nanotubes, which gradually tends to relax. The results show that when the Fe/Al molar ratio is 1:2, although the catalytic activity of the catalyst is not the highest, the carbon nanotubes prepared have the best performance.


Clay Minerals ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Bo Xue ◽  
Hongmei Guo ◽  
Lujie Liu ◽  
Min Chen

AbstractA new yttrium-zirconium-pillared montmorillonite (Y-Zr-MMT), was synthesized, characterized and used as a Ce catalyst support. The Y-Zr-MMT is a good support for dispersing cerium active sites and it is responsible for the high activity in the total oxidation of acetone, toluene and ethyl acetate. The Y-Zr-MMT shows greater advantages than the conventional alumina/cordierite honeycomb supports such as large specific surface area, lower cost and easier preparation. Catalytic tests demonstrated that Ce/Y-Zr-MMT (Ce loading 8.0%) was the most active, with the total oxidation of acetone, toluene and ethyl acetate being achieved at 220, 300 and 220°C, respectively. The catalyst displayed better activity for the oxidation of acetone and ethyl acetate than a conventional, supported Pd-catalyst under similar conditions. The special structure of the yttrium-doped zirconium-pillared montmorillonite can strengthen the interaction between the CeO2 and Zr-MMT support and improve the dispersion of the Ce particles, which enhances the catalytic activity for the oxidation of VOCs. The new catalyst, 8.0%Ce/Y-Zr-MMT, could be promising for industrial applications due to its high catalytic activity and low cost. The support and the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET specific surface area measurements.


2010 ◽  
Vol 146-147 ◽  
pp. 1482-1485 ◽  
Author(s):  
Lin Yu ◽  
Gui Qiang Diao ◽  
Fei Ye ◽  
Ming Sun ◽  
Yue Liu ◽  
...  

α-MnO2, β-MnO2 and Mn2O3 were synthesized from birnessite followed by acid treatment and subsequently calcined under different conditions. These catalysts were used for catalytic combustion of dimethyl ether (DME) and characterized by XRD, BET and H2-TPR techniques. The results showed that the catalytic activity of α-MnO2, β-MnO2 and Mn2O3 are higher than that of birnessite. Larger specific surface area as well as the better reducibility of Mn species in the manganese oxides might be the main contribution for the DME combustion activity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 873
Author(s):  
Natalia Gavrilova ◽  
Maria Myachina ◽  
Victor Nazarov ◽  
Valery Skudin

In recent years, much attention has been paid to the development of a new flexible and variable method for molybdenum carbide (Mo2C) synthesis. This work reports the applicability of nano-size clusters of molybdenum blue to molybdenum carbide production by thermal treatment of molybdenum blue xerogels in an inert atmosphere. The method developed made it possible to vary the type (glucose, hydroquinone) and content of the organic reducing agent (molar ratio R/Mo). The effect of these parameters on the phase composition and specific surface area of molybdenum carbides and their catalytic activity was investigated. TEM, UV–VIS spectroscopy, DTA, SEM, XRD, and nitrogen adsorption were performed to characterize nanoparticles and molybdenum carbide. The results showed that, depending on the synthesis conditions, variants of molybdenum carbide can be formed: α-Mo2C, η-MoC, or γ-MoC. The synthesized samples had a high specific surface area (7.1–203.0 m2/g) and meso- and microporosity. The samples also showed high catalytic activity during the dry reforming of methane. The proposed synthesis method is simple and variable and can be successfully used to obtain both Mo2C-based powder and supports catalysts.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2839 ◽  
Author(s):  
Renata F. Botti ◽  
Murilo D.M. Innocentini ◽  
Thais A. Faleiros ◽  
Murilo F. Mello ◽  
Danilo L. Flumignan ◽  
...  

This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 °C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64–62.54 m²/g; 9 nm) than the sodium formulation (6.34–32.62 m²/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70–75 °C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 °C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions.


2018 ◽  
Vol 6 (15) ◽  
pp. 6130-6154 ◽  
Author(s):  
Haolin Zhu ◽  
Dingxin Liu ◽  
Dianting Zou ◽  
Jianyong Zhang

Since the discovery of metal–organic frameworks (MOFs), covalent–organic frameworks (COFs) and zeolite–imidazole frameworks (ZIFs), many of their outstanding properties have been explored such as their large specific surface area, significant gas adsorption, and high catalytic activity.


2012 ◽  
Vol 538-541 ◽  
pp. 2289-2292
Author(s):  
Xiao Xiao Meng ◽  
Feng Lin He ◽  
Jiang Ying Shen ◽  
Xiang Qian Shen

The nanocrystalline perovskite La-Mn-O hollow microfibers were prepared by the gel-precursor transformation process from reagents of metal salts and citric acid. The gel precursor and resultant products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The specific surface area was measured by the Brunauere-Emmette-Teller method. The catalytic performance of soot combustion was evaluated by thermo-gravimetric analysis under model conditions. The nanocrystalline La-Mn-O hollow microfibers calcined at 650 °C for 6 h are characterized with diameters of 2-8 µm, aspect ratios (length/diameter) about 5-15, a micro-tunnel with an estimated ratio 1/3 of the hollow diameter to fiber diameter, and a high specific surface area of 36.7 m2/g that is 1.9 times higher than the counterpart nanosized powder. This nanocrystalline La-Mn-O hollow microfibers catalyst exhibit a high catalytic activity for the soot combustion, with a low T50 of 397°C, which is largely owing to the high surface area and the micro-tunnel structure.


2014 ◽  
Vol 16 (46) ◽  
pp. 25609-25620 ◽  
Author(s):  
Yaovi Holade ◽  
Claudia Morais ◽  
Karine Servat ◽  
Teko W. Napporn ◽  
K. Boniface Kokoh

We report a convenient and straightforward thermal pre-treatment to improve the physicochemical properties of carbon-based substrates to boost the catalytic activity of platinum nanoparticles.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2928
Author(s):  
Naushad Ahmad ◽  
Fahad Alharthi ◽  
Manawwer Alam ◽  
Rizwan Wahab ◽  
Salim Manoharadas ◽  
...  

The development of a transition-metal-based catalyst with concomitant high activity and stability due to its distinguishing characteristics, yielding an abundance of active sites, is considered to be the bottleneck for the dry reforming of methane (DRM). This work presents the catalytic activity and durability of SrNiO3 and CeNiO3 perovskites for syngas production via DRM. CeNiO3 exhibits a higher specific surface area, pore volume, number of reducible species, and nickel dispersion when compared to SrNiO3. The catalytic activity results demonstrate higher CH4 (54.3%) and CO2 (64.8%) conversions for CeNiO3, compared to 22% (CH4 conversion) and 34.7% (CO2 conversion) for SrNiO3. The decrease in catalytic activity after replacing cerium with strontium is attributed to a decrease in specific surface area and pore volume, and nickel active sites covered with strontium carbonate. The stability results reveal the deactivation of both the catalysts (SrNiO3 and CeNiO3) but SrNiO3 showed more deactivation than CeNiO3, as demonstrated by deactivation factors. The catalyst deactivation is mainly attributed to carbon deposition and these findings are verified by characterizing the spent catalysts.


2019 ◽  
Vol 11 (11) ◽  
pp. 1477-1488
Author(s):  
Yonghang Xu ◽  
Fangya Zhou ◽  
Tao Zhang ◽  
Limiao Lin ◽  
Jingshu Wu ◽  
...  

Supported nano-silver composites, famous for large specific surface area, good dispersibility and high catalytic activity, have been widely used in chemistry and chemical engineering, biomedicine and new materials. In this paper, we report recent research progress on supported nano-silver composites as reviewed from preparation techniques (chemical reduction, physical reduction and in-situ formation), types of supporters (organic and inorganic) and anti-microbial/catalytic activity. Firstly, the principles and merits/demerits of three preparation techniques for silver nanoparticles are elaborated. Afterwards, preparation, structures and properties of supported nano-silver composites are summarized through different types of supporters, as well as their applications in catalytic reaction, pollutant control and antimicrobial. Furthermore, it has been demonstrated that silver nanoparticles produced by in-situ formation are more stable and well-distributed, readily meeting the demands for practical applications. Finally, superior supporters for nano-silver composites should be of high specific surface area and good stability, non-expensive, environmentally friendly and low-toxicity.


Sign in / Sign up

Export Citation Format

Share Document