Development of astaxanthin-loaded layer-by-layer emulsion: Physicochemical properties and improvement on LPS-induced neuroinflammation in mice

2021 ◽  
Author(s):  
Tong Zhao ◽  
Dexue Ma ◽  
Aiziguli Mulati ◽  
Beita Zhao ◽  
Fuguo Liu ◽  
...  

Astaxanthin (AST) has been shown to have neuroprotective effects, however, its bioavailability in vivo is low due to its hydrophobic properties. In this study, heat-treated lactoferrin (LF) with different temperatures...

2021 ◽  
Vol 9 ◽  
Author(s):  
Zach McCaffrey ◽  
Lennard Torres ◽  
Bor-Sen Chiou ◽  
Saulo Rocha Ferreira ◽  
Luiz Eduardo Silva ◽  
...  

While the US nut industry is growing, markets for nut by-products, particularly nutshells and tree prunings, have not kept pace. Torrefaction is a thermochemical process used to improve physicochemical properties of biomass for energy and other applications. The goal of the paper was to characterize the effects of a range of torrefaction conditions on the properties of nut by-product feedstock. The process consists of thermal treatment of biomass at a temperature between 200 and 300°C in the absence of oxygen, where final material properties of the torrefied biomass depend on the temperature, heating rate, and residence time. In general, torrefied biomass exhibits higher hydrophobicity and calorific value with reduced moisture absorption compared to untreated biomass, making it an ideal fuel source for energy applications compared to raw biomass. In this study, almond shells of soft, semi-soft, and hardshell varieties, as well as walnut shells and almond wood, were torrefied at two different temperatures (230 and 290°C) and three different residence times (20, 40, and 60 min) in order to characterize the physicochemical properties. The thermal behavior of raw and heat-treated biomass was investigated by TGA analysis, elemental analysis, pH, helium pycnometry, FTIR spectroscopy, and dynamic vapor sorption analysis.


2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


2020 ◽  
Vol 23 (8) ◽  
pp. 814-826
Author(s):  
Pradeep Hanumanthappa ◽  
Arpitha Ashok ◽  
Inderjit Prakash ◽  
Carmel I. Priya ◽  
Julie Zinzala ◽  
...  

Background: Parkinson’s disease ranks second, after Alzheimer’s as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidence indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery. Objective: The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of “off-target” toxic properties. Methods: In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans. Results and Discussion: Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C. elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans. Conclusion: Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Author(s):  
Yongchao Wang ◽  
Jinjin Wang ◽  
Dandan Zhu ◽  
Yufei Wang ◽  
Guangchao Qing ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1647
Author(s):  
Anna Kaczmarek ◽  
Małgorzata Muzolf-Panek

The aim of the study was to develop predictive models of thiol group (SH) level changes in minced raw and heat-treated chicken meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary, and thyme) during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20 °C). SH changes were measured spectrophotometrically using Ellman’s reagent. Samples stored at 12 °C were used as the external validation dataset. SH content decreased with storage time and temperature. The dependence of SH changes on temperature was adequately modeled by the Arrhenius equation with average high R2 coefficients for raw meat (R2 = 0.951) and heat-treated meat (R2 = 0.968). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models of thiol group decay during meat storage. The obtained results demonstrate that both kinetic Arrhenius (R2 = 0.853 and 0.872 for raw and cooked meat, respectively) and ANN (R2 = 0.803) models can predict thiol group changes in raw and cooked ground chicken meat during storage.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 374
Author(s):  
Teresa Szczęsna ◽  
Ewa Waś ◽  
Piotr Semkiw ◽  
Piotr Skubida ◽  
Katarzyna Jaśkiewicz ◽  
...  

The aim of this study was to determine the influence of storage temperature and time on physicochemical parameters of starch syrups recommended for the winter feeding of bee colonies. The studies included commercially available three starch syrups and an inverted saccharose syrup that were stored at different temperatures: ca. 20 °C, 10–14 °C, and ca. 4 °C. Physicochemical parameters of fresh syrups (immediately after purchase) and syrups after 3, 6, 9, 12, 15, 18, 21, and 24 months of storage at the abovementioned temperatures were measured. It was observed that the rate of unfavorable changes in chemical composition of starch syrups and the inverted saccharose syrup, mainly the changes in the 5-hydroxymethylfurfural (HMF) content, depended on the type of a syrup and storage conditions (temperature, time). Properties of tested starch syrups intended for winter feeding of bees stored at ca. 20 °C maintained unchanged for up to 6 months, whereas the same syrups stored at lower temperatures (10–14 °C) maintained unchanged physicochemical parameters for about 12 months. In higher temperatures, the HMF content increased. To date, the influence of this compound on bees has not been thoroughly investigated.


Author(s):  
Marietta Zita Poles ◽  
László Juhász ◽  
Mihály Boros

AbstractMammalian methanogenesis is regarded as an indicator of carbohydrate fermentation by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-bacterial process, methane is generally considered to be biologically inactive. However, recent studies have provided evidence for methane bioactivity in various in vivo settings. The administration of methane either in gas form or solutions has been shown to have anti-inflammatory and neuroprotective effects in an array of experimental conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been demonstrated that exogenous methane influences the key regulatory mechanisms and cellular signalling pathways involved in oxidative and nitrosative stress responses. This review offers an insight into the latest findings on the multi-faceted organ protective activity of exogenous methane treatments with special emphasis on its versatile effects demonstrated in sepsis models.


Sign in / Sign up

Export Citation Format

Share Document