scholarly journals Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au–Ag alloy nanoboxes

RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 28778-28785
Author(s):  
Aswin Raj Kumar ◽  
Karthik Balaji Shanmugasundaram ◽  
Junrong Li ◽  
Zhen Zhang ◽  
Abu Ali Ibn Sina ◽  
...  

The detection of circulating biomarkers in liquid biopsies has the potential to provide a non-invasive route for earlier cancer diagnosis and treatment management.

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1725 ◽  
Author(s):  
Shiue-Luen Chen ◽  
Chong-You Chen ◽  
Jason Chia-Hsun Hsieh ◽  
Zih-Yu Yu ◽  
Sheng-Jen Cheng ◽  
...  

Liquid biopsies use blood or urine as test samples, which are able to be continuously collected in a non-invasive manner. The analysis of cancer-related biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA, and exosomes provides important information in early cancer diagnosis, tumor metastasis detection, and postoperative recurrence monitoring assist with clinical diagnosis. However, low concentrations of some tumor markers, such as CTCs, ctDNA, and microRNA, in the blood limit its applications in clinical detection and analysis. Nanomaterials based on graphene oxide have good physicochemical properties and are now widely used in biomedical detection technologies. These materials have properties including good hydrophilicity, mechanical flexibility, electrical conductivity, biocompatibility, and optical performance. Moreover, utilizing graphene oxide as a biosensor interface has effectively improved the sensitivity and specificity of biosensors for cancer detection. In this review, we discuss various cancer detection technologies regarding graphene oxide and discuss the prospects and challenges of this technology.


2020 ◽  
Vol 14 (13) ◽  
pp. 1255-1263
Author(s):  
Wei Zhuang ◽  
Luísa Camacho ◽  
Camila S Silva ◽  
Huixiao Hong

Recent studies have revealed that circulating microRNAs are promising biomarkers for detecting toxicity or disease. Quantitative real-time polymerase chain reaction (qPCR) is often used to measure the levels of microRNAs. Besides complete and certain data, investigators inevitably have observed technically incomplete or uncertain qPCR data. Investigators usually set incomplete observations equal to the maximum quality number of qPCR cycles, apply the complete-observation method, or choose not to analyze targets with incomplete observations. Using biostatistical knowledge and published studies, we show that three commonly applied methods tend to cause biased inference and decrease reproducibility in biomarker detection. More efforts are needed to address the challenges to identify and detect reliable, novel circulating biomarkers in liquid biopsies.


2020 ◽  
pp. 71-74
Author(s):  
M.M. Melnyk ◽  
◽  
S.V. Nespradko ◽  
I.V. Goncharuk ◽  
M.V. Marchenko ◽  
...  

The objective: analyse the effectiveness of diagnosis and treatment for early cervical cancer. Materials and methods. Analysed 107 cases of women’s disease on CIN ІІІ, cancer in situ, they were on treatment in National cancer institute and Kyiv dictrict cancer dispensary from 2010 till 2015 years. Results. Diagnosed percent relapse CIN ІІІ, cancer in situ contain 4.57% uninvasive and invasive form – 0.94%. Conclusion. According diagnostic CIN ІІ and CIN ІІІ is recommended to do treatment conization and dynamic dispensary observation. Are making complex program of infection HPV16, 18. In appering of margins resection some elements of tumor after wider conization by forms of cancer in situ. Many of expansive burns in cervical glands, in making of reproductive function, going disease (nodel leiomyoma of corpus uteri etc). In perspective is accept the notion of looking after and screening research of considering infection HPV16, 18 on CIN І, CIN ІІ. Key words: cervical cancer, сancer in situ, CIN І–ІІІ, diagnostic, treatment, conization.


2020 ◽  
Vol 20 (11) ◽  
pp. 1276-1287 ◽  
Author(s):  
Tran Q. Huy ◽  
Pham T.M. Huyen ◽  
Anh-Tuan Le ◽  
Matteo Tonezzer

Background: Silver nanoparticles (AgNPs) are well-known as a promising antimicrobial material; they have been widely used in many commercial products against pathogenic agents. Despite a growing concern regarding the cytotoxicity, AgNPs still have attracted considerable interest worldwide to develop a new generation of diagnostic tool and effective treatment solution for cancer cells. Objective: This paper aims to review the advances of AgNPs applied for cancer diagnosis and treatment. Methods: The database has been collected, screened and analysed through up-to-date scientific articles published from 2007 to May 2019 in peer-reviewed international journals. Results: The findings of the database have been analysed and divided into three parts of the text that deal with AgNPs in cancer diagnosis, their cytotoxicity, and the role as carrier systems for cancer treatment. Thanks to their optical properties, high conductivity and small size, AgNPs have been demonstrated to play an essential role in enhancing signals and sensitivity in various biosensing platforms. Furthermore, AgNPs also can be used directly or developed as a drug delivery system for cancer treatment. Conclusion: The review paper will help readers understand more clearly and systematically the role and advances of AgNPs in cancer diagnosis and treatment.


2020 ◽  
Vol 138 ◽  
pp. 57-67 ◽  
Author(s):  
Tineke Vandenbroucke ◽  
Magali Verheecke ◽  
Mathilde van Gerwen ◽  
Kristel Van Calsteren ◽  
Michael J. Halaska ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 159
Author(s):  
Yao Peng ◽  
Yuqiang Nie ◽  
Jun Yu ◽  
Chi Chun Wong

Colorectal cancer (CRC) is one of the leading cancers that cause cancer-related deaths worldwide. The gut microbiota has been proved to show relevance with colorectal tumorigenesis through microbial metabolites. By decomposing various dietary residues in the intestinal tract, gut microbiota harvest energy and produce a variety of metabolites to affect the host physiology. However, some of these metabolites are oncogenic factors for CRC. With the advent of metabolomics technology, studies profiling microbiota-derived metabolites have greatly accelerated the progress in our understanding of the host-microbiota metabolism interactions in CRC. In this review, we briefly summarize the present metabolomics techniques in microbial metabolites researches and the mechanisms of microbial metabolites in CRC pathogenesis, furthermore, we discuss the potential clinical applications of microbial metabolites in cancer diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document