Programmable assembly of gold nanoparticle nanoclusters and lattices

2020 ◽  
Vol 8 (31) ◽  
pp. 6810-6813
Author(s):  
Luyao Shen ◽  
Victor Pan ◽  
Haofei Li ◽  
Yunlong Zhang ◽  
Pengfei Wang ◽  
...  

Deterministic assembly of metallic nanoparticles (e.g. gold nanoparticles) into prescribed configurations has promising applications in many fields such as biosensing and drug delivery.

2014 ◽  
Vol 2 (27) ◽  
pp. 4204-4220 ◽  
Author(s):  
I. Fratoddi ◽  
I. Venditti ◽  
C. Cametti ◽  
M. V. Russo

Gold nanoparticles and their conjugates as drug delivery vehicles for selective targeting of cancer cells.


2015 ◽  
Vol 3 (02) ◽  
pp. 13-27 ◽  
Author(s):  
Naveen Sharma ◽  
Ganesh Bhatt ◽  
Preeti Kothiyal

Gold nanoparticles (AuNPs) have several biomedical applications in diagnosis and treating of disease such as targeted chemotherapy and in pharmaceutical drug delivery due to their multifunctionality and unique characteristics. AuNPs can be conjugated with ligands, imaging labels, therapeutic drugs and other functional moieties for site specific drug delivery application. In this present review we are discussing the synthesis, properties, and forthcoming applications of gold nanoparticle (AuNPs) which is the most studied among all other metallic-nanoparticles. Here our main focus is to explain the AuNPs application in cancer treatment. AuNPs provides non-toxic carrier system for pharmaceutical drug and gene delivery applications. Currently various anticancer drugs are available but these are cause the necrosis of cancerous cell as well as normal cells. AuNPs cause the necrosis of only cancer cells therefore we can utilize it as a delivery vehicle as well as anticancer agent


Nanoscale ◽  
2021 ◽  
Author(s):  
Casper F. T. van der Ven ◽  
Mark W. Tibbitt ◽  
João Conde ◽  
Alain van Mil ◽  
Jesper Hjortnaes ◽  
...  

A novel injectable hydrogel drug delivery platform introduces miRNA therapeutics coupled to gold nanoparticles to cells in a 3D bioprinted heart valve disease model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2239
Author(s):  
Sean Burkitt ◽  
Mana Mehraein ◽  
Ramunas K. Stanciauskas ◽  
Jos Campbell ◽  
Scott Fraser ◽  
...  

Gold nanoparticles continue to generate interest for use in several biomedical applications. Recently, researchers have been focusing on exploiting their dual diagnostic/therapeutic theranostic capabilities. Before clinical translation can occur, regulatory agencies will require a greater understanding of their biodistribution and safety profiles post administration. Previously, the real-time identification and tracking of gold nanoparticles in free-flowing vasculature had not been possible without extrinsic labels such as fluorophores. Here, we present a label-free imaging approach to examine gold nanoparticle (AuNP) activity within the vasculature by utilizing multiphoton intravital microscopy. This method employs a commercially available multiphoton microscopy system to visualize the intrinsic luminescent signal produced by a multiphoton absorption-induced luminescence effect observed in single gold nanoparticles at frame rates necessary for capturing real-time blood flow. This is the first demonstration of visualizing unlabeled gold nanoparticles in an unperturbed vascular environment with frame rates fast enough to achieve particle tracking. Nanoparticle blood concentration curves were also evaluated by the tracking of gold nanoparticle flow in vasculature and verified against known pre-injection concentrations. Half-lives of these gold nanoparticle injections ranged between 67 and 140 s. This label-free imaging approach could provide important structural and functional information in real time to aid in the development and effective analysis of new metallic nanoparticles for various clinical applications in an unperturbed environment, while providing further insight into their complex uptake and clearance pathways.


2018 ◽  
Vol 25 (16) ◽  
pp. 1920-1944 ◽  
Author(s):  
Zhicong Miao ◽  
Zilin Gao ◽  
Ruoxia Chen ◽  
Xiaoqing Yu ◽  
Zhiqiang Su ◽  
...  

The conjugation of gold nanoparticles (AuNPs) with biomolecules could create many outstanding biofunctions for the surface-functionalized nanoparticles and extend their biomedical applications. In this review, we summarize the recent advances in the surface bioengineering of AuNPs with biomolecules, such as DNA, proteins, peptides, and biopolymers, in which the details on the structure, functions, and properties of surface- bioengineered AuNPs are discussed. In addition, the surface-biofunctionalization of AuNPs for biomedical applications like biosensing, bioimaging, drug delivery, and tissue engineering are introduced. It is expected that this work will be very helpful for readers to understand the surface functionalization and engineering techniques for various metallic nanoparticles and design novel biomaterials for biomedical applications.


Author(s):  
Zhenpeng Qin ◽  
Neha Shah ◽  
Taner Akkin ◽  
Warren C. W. Chan ◽  
John C. Bischof

The rapidly evolving field of nanomedicine focuses on the design and application of multi-functional nanoparticles for diagnosis and treatment of diseases especially cancer1. Many of these nanomaterials are designed to serve as drug delivery or image contrast agents, or even to generate heat for hyperthermia (i.e. treatment), of cancer. Heating examples include gold nanoparticles (GNPs) for photothermal therapy3, and superparamagnetic nanoparticles for magnetic fluid hyperthermia4.


2020 ◽  
Vol 16 (2) ◽  
pp. 204-213 ◽  
Author(s):  
Melissa A. Vetten ◽  
Mary Gulumian

Background: Endotoxin-free engineered nanoparticle suspensions are imperative for their successful applications in the field of nanomedicine as well as in the investigations in their toxicity. Gold nanoparticles are known to interfere with various in vitro assays due to their optical properties and potential for surface reactivity. In vitro endotoxin testing assays are known to be susceptible to interference caused by the sample being tested. Objective: This study aimed to identify a preferred assay for the testing of endotoxin contamination in gold nanoparticle suspensions. Methods: The interference by gold nanoparticles on three assays namely, the commonly used limulus amebocyte lysate chromogenic assay, the limulus amebocyte lysate gel-clot method, and the less common recombinant Factor C (rFC) assay, was tested. Results: Possible interference could be observed with all three assays. The interference with the absorbance- based chromogenic assay could not be overcome by dilution; whilst the qualitative nature of the gel-clot assay excluded the possibility of distinguishing between a false positive result due to enhancement of the sensitivity of the assay, and genuine endotoxin contamination. However, interference with the rFC assay was easily overcome through dilution. Conclusion: The rFC assay is recommended as an option for endotoxin contamination detection in gold nanoparticle suspensions.


2021 ◽  
Author(s):  
Yiren Cao ◽  
Jinjun Wu ◽  
Bo Pang ◽  
Hongquan Zhang ◽  
X. Chris Le

The trans-cleavage activity of the target-activated CRISPR-Cas12a liberated an RNA crosslinker from a molecular transducer, which facilitated assembly of gold nanoparticles. Integration of the molecular transducer with isothermal amplification and...


2021 ◽  
Author(s):  
Min Chen ◽  
Leiqing Pan ◽  
K. Tu

A simple and quick responsive fluorescent biosensor for Salmonella typhimurium detection based on the recognition of aptamer coupled with alendronic acid (ADA)@upconversion nanoparticles (UCNPs) and gold nanoparticle (AuNPs) has been...


Sign in / Sign up

Export Citation Format

Share Document