pH-Triggered nanoreactors as oxidative stress amplifiers for combating multidrug-resistant biofilms

2021 ◽  
Author(s):  
Lei Huang ◽  
Shangming Jiang ◽  
Bo Cai ◽  
Guobin Wang ◽  
Zheng Wang ◽  
...  

Developing radical oxygen species (ROS)-generating nanoreactors as new “antibiotics” is a promising strategy for the treatment of multidrug-resistant (MDR) biofilm infections.

2002 ◽  
Vol 96 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Gaëlle Clermont ◽  
Catherine Vergely ◽  
Saëd Jazayeri ◽  
Jean-Jacques Lahet ◽  
Jean-Jacques Goudeau ◽  
...  

Background Cardiopulmonary bypass (CPB) can induce deleterious effects that could be triggered in part by radical oxygen species; however, their involvement in the course of surgery has been elusive. The aim of this study was to evaluate the time course and origin of radical oxygen species release, myocardial or not, in patients undergoing coronary artery surgery involving CPB. Methods Blood samples were taken from periphery and coronary sinus of patients during CPB, and oxidative stress was evaluated by direct and indirect approaches. Direct detection of alkyl and alkoxyl radicals was assessed by electron spin resonance spectroscopy associated with the spin-trapping technique using alpha-phenyl-N-tert-butylnitrone. Results The authors showed that the spin adduct concentration was not influenced by anesthesia and pre-CPB surgery. A rapid systemic increase of plasma spin adduct concentration occurred after starting CPB, and it stayed at a high concentration until the end of CPB. At the beginning of reperfusion period, radical oxygen species release was accelerated in the coronary sinus; however, it was not significant. A positive correlation was found between alpha-phenyl-N-tert-butylnitrone adduct concentrations and (1) the duration of CPB and (2) concentration of postoperative creatine phosphokinase of muscle band (CPK MB). Plasma vitamin E and C, ascorbyl radical, uric acid, thiol, plasma antioxidant status, and thiobarbituric acid reacting substances were also measured but did not give relevant indications, except for uric acid, which seemed to be consumed by the heart during reperfusion. Conclusion The results indicate that a systemic production of free radicals occurs during CPB that may overwhelm the production related to reperfusion of the ischemic heart. This systemic oxidative stress is likely to participate in secondary myocardial damage.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Pang ◽  
Dengfeng Li ◽  
Jing Zhu ◽  
Jingliang Cheng ◽  
Gang Liu

AbstractRapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics, but antimicrobial photodynamic therapy (aPDT) provides an excellent alternative. This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species (ROS), which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern. When replacing light with low-frequency ultrasonic wave to activate sensitizer, a novel ultrasound-driven treatment emerges as antimicrobial sonodynamic therapy (aSDT). Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections, especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers, and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization. In this review, we systemically outline the mechanisms, targets, and current progress of aPDT/SDT for bacterial theranostic application. Furthermore, potential limitations and future perspectives are also highlighted.


mBio ◽  
2021 ◽  
Author(s):  
João Anes ◽  
Katherine Dever ◽  
Athmanya Eshwar ◽  
Scott Nguyen ◽  
Yu Cao ◽  
...  

Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance.


2021 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Ankita Vaishampayan ◽  
Elisabeth Grohmann

Antibiotic resistance and infections caused by multidrug-resistant bacteria are global health concerns. Reducing the overuse and misuse of antibiotics is the primary step toward minimizing the antibiotic resistance crisis. Thus, it is imperative to introduce and implement novel antimicrobial strategies. Recently, several alternative antimicrobials targeting oxidative stress in bacteria have been studied and shown to be promising. Oxidative stress occurs when bacterial cells fail to detoxify the excessive reactive oxygen species (ROS) accumulated in the cells. Bacteria deploy numerous defense mechanisms against oxidative stress. The oxidative stress response is not essential for the normal growth of bacteria, but it is crucial for their survival. This toxic oxidative stress is created by the host immune response or antimicrobials generating ROS. ROS possess strong oxidation potential and cause serious damage to nucleic acids, lipids, and proteins. Since ROS-based antimicrobials target multiple sites in bacteria, these antimicrobials have attracted the attention of several researchers. In this review, we present recent ROS-based alternative antimicrobials and strategies targeting oxidative stress which might help in mitigating the problem of antibiotic resistance and dissemination.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peyman Tabnak ◽  
Zanyar HajiEsmailPoor ◽  
Soroush Soraneh

Lung cancer is the second commonly diagnosed malignancy worldwide and has the highest mortality rate among all cancers. Tremendous efforts have been made to develop novel strategies against lung cancer; however, the overall survival of patients still is low. Uncovering underlying molecular mechanisms of this disease can open up new horizons for its treatment. Ferroptosis is a newly discovered type of programmed cell death that, in an iron-dependent manner, peroxidizes unsaturated phospholipids and results in the accumulation of radical oxygen species. Subsequent oxidative damage caused by ferroptosis contributes to cell death in tumor cells. Therefore, understanding its molecular mechanisms in lung cancer appears as a promising strategy to induce ferroptosis selectively. According to evidence published up to now, significant numbers of research have been done to identify ferroptosis regulators in lung cancer. Therefore, this review aims to provide a comprehensive standpoint of molecular mechanisms of ferroptosis in lung cancer and address these molecules’ prognostic and therapeutic values, hoping that the road for future studies in this field will be paved more efficiently.


2021 ◽  
Vol 15 ◽  
Author(s):  
Isabel Varela-Nieto ◽  
Silvia Murillo-Cuesta ◽  
Lourdes Rodríguez-de la Rosa ◽  
María Jesús Oset-Gasque ◽  
José Marco-Contelles

Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2018 ◽  
Vol 17 (2) ◽  
pp. 117-121
Author(s):  
Sun Maw-Sheng ◽  
Liang Chun-Ya ◽  
Hsieh Po-Chun ◽  
Kuo Chan-Yen

Apoptosis of hepatocyte, under ischemia/reperfusion (IR) conditions, has been identified as an essential process in the progression of liver transplantation. Under these conditions, mitochondria can become a threat to the cell because of their capacity to generate reactive oxygen species (ROS). Additionally, ROS overproduction may induce inflammation. As ROS accumulation appears to cause hepatocyte damage or death, there has been considerable interest in identifying the candidate natural products involved and in developing strategies to reduce oxidative stress. In this study, we use Danshensu as a candidate product to speculate whether has the protective effect on apoptotic hepatocyte upon IR. To speculate the apoptotic phenomena was reversed by Danshensu, we detected the p53, cleaved-caspase 3 expression by western blotting, as well as caspase-3 activity. Additionally, we analyzed the ROS levels by 2′,7′-dichlorofluorescin diacetate (DCF-DA) staining. We also detected the cell viability by WST-1. Results showed that Danshensu alleviated hypoxia-caused cell apoptosis via ROS overproduction. We suggested that Danshensu is a good strategy for treating hepatocyte damage upon IR.


2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


2019 ◽  
Vol 70 (8) ◽  
pp. 2822-2825 ◽  
Author(s):  
Cornel Moisa ◽  
Mihnea Alexandru Gaman ◽  
Camelia Cristina Diaconu ◽  
Amelia Maria Gaman

Essential thrombocythemia (ET) is a BCR-ABL1-negative myeloproliferative neoplasm associated with thrombotic and haemorrhagic complications. Reactive oxygen species (ROS) overexpression induces a growth advantage to JAK2V617F-positive clones and, in association with a higher number of immature platelets, leukocytosis, and additional cardiovascular risk factors, leads to an increased risk for thrombotic events. We evaluated oxidative stress by measuring ROS levels and the total antioxidant capacity (TAC) in 62 ET patients and investigated the relationship between oxidative stress, JAK2V617F mutational status and the development of thrombotic events. We found higher oxidative stress levels in JAK2V617F-positive vs. JAK2V617F-negative ET cases with no significant differences between homozygous and heterozygous genotypes. Increased ROS levels and thrombotic events were more frequent in ET patients with old age at diagnosis, higher haematocrit levels or leukocytosis.


Sign in / Sign up

Export Citation Format

Share Document