Conductive Thermoplastic Polyurethane Nanocomposite Foams Derived from Cellulose/MWCNT Aerogel Framework: Simultaneous Enhancement of Piezoresistance, Strength, and Endurance

Author(s):  
Yanpei Fei ◽  
Feng Chen ◽  
Wei Fang ◽  
Aleksander Hejna ◽  
Lixin Xu ◽  
...  

High conductivity and excellent mechanical properties of composite polymers favors their application as piezoresistive strain sensors. Nonetheless, it is difficult to develop composite polymers with desirable piezoresistance, mechanicaland durable properties....

2021 ◽  
Vol 875 ◽  
pp. 96-103
Author(s):  
Ayesha Afzal ◽  
Iqra Abdul Rashid ◽  
H.M. Faizan Shakir ◽  
Asra Tariq

Conducting polymer blends Polyaniline-Dodecylbenzene sulfonic acid (Pani.DBSA) and thermoplastic polyurethane (TPU) were prepared using in-situ emulsion polymerization method by dissolving both components in DMF. Ani.DBSA/TPU blends were prepared with different compositions 20/80, 30/70, 40/60 and 50/50 wt%. Theses blends have good conducting and mechanical properties. Blends were characterized by Potentiostate, Thermogravimetric analysis (TGA), Infrared spectroscopy (FTIR) and Dynamic mechanical thermal analyzer (DMTA). The electrical conductivity increases up to 30 wt% loading of aniline.DBSA after that it decreases gradually. The uniform dispersion of aniline.DBSA showed in SEM images which is the indication of a strong connection between aniline.DBSA and TPU which increase the conductivity. These blends can be used as strain sensors.


Author(s):  
Cameron Hohimer ◽  
Nahal Aliheidari ◽  
Changki Mo ◽  
Amir Ameli

As the soft robotics industry continues to grow, the need for new materials and simplified manufacturing techniques are essential. Of interest is the development of highly flexible strain sensors that are easily integrated into these robotic components. Current strain sensing solutions using piezoresistive materials often involve complex fabrication techniques with multiple steps. Recent work by the authors has shown that thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) has good piezoresistive behavior and can be easily fabricated into strain sensors using Fused Deposition Modeling (FDM). This work expands upon that effort to characterize the mechanical properties of FDM-printed TPU/MWCNT as a function of the FDM processing parameters. In this study, the air gap, raster orientation, and MWCNT weight percent were varied and tensile tests performed. The stress-strain behavior, modulus of elasticity, and ultimate tensile strength (UTS) are compared to assess the influence of the processing conditions. Optical microscopy was also carried out to correlate the mechanical behavior to the printed mesostructures. The results show that with increased MWCNT content, the UTS decreased by as much at 47% for 2wt.%MWCNT, while the modulus of elasticity increased by 54%, compared to those of pure TPU. The results of this work provide an understanding of the mechanical performance in relation to the print parameters and sets the base to tune the mechanical properties of printed flexible functional nanocomposites.


2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Johannes Mersch ◽  
Henriette Probst ◽  
Andreas Nocke ◽  
Chokri Cherif ◽  
Gerald Gerlach

Carbon particle-filled elastomers are a widely researched option to be used as piezoresistive strain sensors for soft robotics or human motion monitoring. Therefore, various polymers can be compounded with carbon black (CB), carbon nanotubes (CNT) or graphene. However, in many studies, the electrical resistance strain response of the carbon particle-filled elastomers is non-monotonic in dynamic evaluation scenarios. The non-monotonic material behavior is also called shoulder phenomenon or secondary peak. Until today, the underlying cause is not sufficiently well understood. In this study, several influencing test parameters on the shoulder phenomena are explored, such as strain level, strain rate and strain history. Moreover, material parameters such as CNT content and anisotropy are varied in melt-spun CNT filled thermoplastic polyurethane (TPU) filament yarns, and their non-monotonic sensor response is evaluated. Additionally, a theoretical concept for the underlying mechanism and thereupon-based model is presented. An equivalent circuit model is used, which incorporates the visco-elastic properties and the characteristic of the percolation network formed by the conductive filler material. The simulation results are in good agreement when compared to the experimental results.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1469 ◽  
Author(s):  
Orathai Tangsirinaruenart ◽  
George Stylios

This research presents an investigation of novel textile-based strain sensors and evaluates their performance. The electrical resistance and mechanical properties of seven different textile sensors were measured. The sensors are made up of a conductive thread, composed of silver plated nylon 117/17 2-ply, 33 tex and 234/34 4-ply, 92 tex and formed in different stitch structures (304, 406, 506, 605), and sewn directly onto a knit fabric substrate (4.44 tex/2 ply, with 2.22, 4.44 and 7.78 tex spandex and 7.78 tex/2 ply, with 2.22 and 4.44 tex spandex). Analysis of the effects of elongation with respect to resistance indicated the ideal configuration for electrical properties, especially electrical sensitivity and repeatability. The optimum linear working range of the sensor with minimal hysteresis was found, and the sensor’s gauge factor indicated that the sensitivity of the sensor varied significantly with repeating cycles. The electrical resistance of the various stitch structures changed significantly, while the amount of drift remained negligible. Stitch 304 2-ply was found to be the most suitable for strain movement. This sensor has a wide working range, well past 50%, and linearity (R2 is 0.984), low hysteresis (6.25% ΔR), good gauge factor (1.61), and baseline resistance (125 Ω), as well as good repeatability (drift in R2 is −0.0073). The stitch-based sensor developed in this research is expected to find applications in garments as wearables for physiological wellbeing monitoring such as body movement, heart monitoring, and limb articulation measurement.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


2021 ◽  
pp. 002199832110370
Author(s):  
Chia-Fang Lee ◽  
Chin-Wen Chen ◽  
Fu-Sheng Chuang ◽  
Syang-Peng Rwei

Multi-wall carbon nanotubes (MWCNTs) at 0.5 wt% to 2 wt% proportions were added to thermoplastic polyurethane (TPU) synthesized with polycarbonatediol (PCDL), 4,4’-methylene diphenyl diisocyanate (MDI), and 1,3-butanediol(1,3-BDO). To formulate a new TPU-MWCNT nanocomposite, the composite was melt-blended with a twin-screw extruder. To ensure the even dispersion of MWCNTs, dispersant (ethylene acrylic ester terpolymer; Lotader AX8900) of equal weight proportion to the added MWCNTs was also added during the blending process. Studies on the mechanical and thermal properties, and melt flow experiments and phase analysis of TPU-MWCNT nanocomposites, these nanocomposites exhibit higher tensile strength and elongation at break than neat TPU. TPU-MWCNT nanocomposites with higher MWCNT content possess higher glass-transition temperature (Tg), a lower melt index, and greater hardness. Relative to neat TPU, TPU-MWCNT nanocomposites exhibit favorable mechanical properties. By adding MWCNTs, the tensile strength of the nanocomposites increased from 7.59 MPa to 21.52 MPa, and Shore A hardness increased from 65 to 81. Additionally, TPU-MWCNT nanocomposites with MWCNTs had lower resistance coefficients; the resistance coefficient decreased from 4.97 × 1011 Ω/sq to 2.53 × 104 Ω/sq after adding MWCNTs, indicating a conductive polymer material. Finally, the internal structure of the TPU-MWCNT nanocomposites was examined under transmission electron microscopy. When 1.5 wt% or 2 wt% of MWCNTs and dispersant were added to TPU, the MWCNTs were evenly dispersed, with increased electrical conductivity and mechanical properties. The new material is applicable in the electronics industry as a conductive polymer with high stiffness.


Sign in / Sign up

Export Citation Format

Share Document