scholarly journals Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration

2016 ◽  
Vol 473 (16) ◽  
pp. 2531-2544 ◽  
Author(s):  
Kathryn M. Taylor ◽  
Issa A. Muraina ◽  
Dylan Brethour ◽  
Gerold Schmitt-Ulms ◽  
Thirayost Nimmanon ◽  
...  

Zinc is involved in cell migration during embryo development and in cancer. We show that a zinc transporter consisting of two proteins, ZIP6 and ZIP10, stimulates both cell migration and division in mammalian cells and in the zebrafish embryo.

2020 ◽  
Author(s):  
Nicoleta Anghel ◽  
Pablo A. Winzer ◽  
Dennis Imhof ◽  
Joachim Müller ◽  
Javier Langa ◽  
...  

AbstractBumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice, were assessed in pregnant mice. Drugs were emulsified in corn oil and applied by gavage for 5 days. Five BKIs did not affect pregnancy, 5 BKIs exhibited 15-35% of neonatal mortality, and 5 compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilized eggs to 0.2-50μM of BKIs and microscopical monitoring of embryo development in a blinded manner during 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows to calculate an impact score (Si) that indicates at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for 9 compounds no clear correlation between Si and pregnancy outcome was visible. However, those 3 BKIs affecting zebrafish embryos only at high concentrations (40μM or higher) did not impair mouse pregnancy at all, and those 3 compounds that inhibited zebrafish embryo development already at 0.2μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has a limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude, that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.


2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Author(s):  
Qiuping Zhang ◽  
Lifeng Wang ◽  
Qian Gao ◽  
Xinge Zhang ◽  
Yushuang Lin ◽  
...  

Author(s):  
Shuang Cai ◽  
Shuang Quan ◽  
Guangxin Yang ◽  
Meixia Chen ◽  
Qianhong Ye ◽  
...  

ABSTRACTWith the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.


Author(s):  
Elaine D. Brabazon ◽  
Ronan T. Bree ◽  
Micheal W. Carton ◽  
Maura Grealy ◽  
Lucy Byrnes

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Dolati ◽  
M J Zamiri ◽  
A Akhlaghi ◽  
Z Jahromi

Abstract Study question Does quercetin (75 or 100 mg/kg BW/day) co-administration with lead acetate to male mice affects embryonic development in female mice? Summary answer The low-dose quercetin (75 mg/kg BW/day) ameliorated the adverse effects of lead acetate on mouse embryogenesis. What is known already Lead causes male infertility by impacting on endocrine system and spermatogenesis, and may exert undesirable effects on the offspring. The currently approved treatment for lead poisoning is the use of chelating agents, which form an insoluble complex with lead and shield it from biological targets; thus, reducing its toxicity. One of the main mechanisms of lead-induced toxicity is oxidative stress, and it has been reported that natural antioxidants can reduce the heavy metals toxicity. The aim of the present study was to examine the protective effects of quercetin on the toxicity induced by lead acetate on the embryogenesis in mice. Study design, size, duration Sexually mature (eight-week-old) NMRI male mice (n = 24) were randomly divided into four groups (n = 6 per group) receiving (i) distilled water (control group); (ii) lead acetate (150 mg/kg BW/day) dissolved in deionized water (LA); (iii) lead acetate (150 mg/kg BW/day) + quercetin (75 mg/kg BW/day) (LQ75); (IV) lead acetate (150 mg/kg BW/day) + quercetin (100 mg/kg BW/day) (LQ100). Treatments were applied daily as oral gavages for one cycle of the seminiferous epithelium (35 days). Participants/materials, setting, methods At the end of treatment administration, the males were joined with super-ovulated females, and the retrieved zygotes were cultured for evaluation of the embryo development (at 2-cell, 4-cell, 8-cell, and blastocyst stages), and blastocyst cell number using differential staining (propidium iodide and bisbenzimide). After incubation of capacitated sperm with oocytes, an ultraviolet light microscope was used following 3 min incubation with 25 µg⁄mL bisbenzamide solution for fertilization assessment. Main results and the role of chance Lead acetate (LA) treatment of male mice decreased the 2-cell stage compared with the control group (P > 0.05). There was no difference between control and LQ75, and between LA and LQ100. The other stages of embryonic development were not significantly affected by the treatment. Overall, early embryonic development in the control and LQ75 mice were better than LQ100 and LA mice. The number of cells in the trophectoderm and inner-cell mass were not affected by treatments. However, the total blastocyst cell number in the control was higher than in the other groups; there was no significant difference between LQ100, LQ75 and LA groups. Fertilization rate was not affected by the treatments (P < 0.05). Quercetin acts as a potent antioxidant at low doses, but at high doses exerts a pro-oxidant action. According to previous reports, higher concentrations of quercetin increased apoptosis and necrosis while decreasing the activities of the antioxidant enzymes. Also, it has been suggested that quercetin might disrupt the endocrine system and interfere with Sertoli cell function and sperm motility. Limitations, reasons for caution A limitation of this study is narrow dose selection; more studies are needed to determine the effective dose of quercetin in ameliorating the lead toxicity. There are also side effects of lead-quercetin chelates such as metal redistribution, essential metal loss, accumulation and persistency in intracellular sites, and peroxidation. Wider implications of the findings: Lead administration adversely impacted on the embryogenesis; on the other hand, paternal quercetin co-administration somewhat ameliorated the adverse effects of lead on mice embryogenesis. Trial registration number Not applicable


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wenwen Chen ◽  
Wei Wang ◽  
Xiaoxia Sun ◽  
Shanshan Xie ◽  
Xiaoyang Xu ◽  
...  

Abstract Cell migration plays pivotal roles in many biological processes; however, its underlying mechanism remains unclear. Here, we find that NudC-like protein 2 (NudCL2), a cochaperone of heat shock protein 90 (Hsp90), modulates cell migration by stabilizing both myosin-9 and lissencephaly protein 1 (LIS1). Either knockdown or knockout of NudCL2 significantly increases single-cell migration, but has no significant effect on collective cell migration. Immunoprecipitation–mass spectrometry and western blotting analyses reveal that NudCL2 binds to myosin-9 in mammalian cells. Depletion of NudCL2 not only decreases myosin-9 protein levels, but also results in actin disorganization. Ectopic expression of myosin-9 efficiently reverses defects in actin disorganization and single-cell migration in cells depleted of NudCL2. Interestingly, knockdown of myosin-9 increases both single and collective cell migration. Depletion of LIS1, a NudCL2 client protein, suppresses both single and collective cell migration, which exhibits the opposite effect compared with myosin-9 depletion. Co-depletion of myosin-9 and LIS1 promotes single-cell migration, resembling the phenotype caused by NudCL2 depletion. Furthermore, inhibition of Hsp90 ATPase activity also reduces the Hsp90-interacting protein myosin-9 stability and increases single-cell migration. Forced expression of Hsp90 efficiently reverses myosin-9 protein instability and the defects induced by NudCL2 depletion, but not vice versa. Taken together, these data suggest that NudCL2 plays an important role in the precise regulation of cell migration by stabilizing both myosin-9 and LIS1 via Hsp90 pathway.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1756
Author(s):  
Jessica Guerra ◽  
Paola Chiodelli ◽  
Chiara Tobia ◽  
Claudia Gerri ◽  
Marco Presta

Primary cilium drives the left-right asymmetry process during embryonic development. Moreover, its dysregulation contributes to cancer progression by affecting various signaling pathways. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system modulates primary cilium length and plays a pivotal role in embryogenesis and tumor growth. Here, we investigated the impact of the natural FGF trap long-pentraxin 3 (PTX3) on the determination of primary cilium extension in zebrafish embryo and cancer cells. The results demonstrate that down modulation of the PTX3 orthologue ptx3b causes the shortening of primary cilium in zebrafish embryo in a FGF-dependent manner, leading to defects in the left-right asymmetry determination. Conversely, PTX3 upregulation causes the elongation of primary cilium in FGF-dependent cancer cells. Previous observations have identified the PTX3-derived small molecule NSC12 as an orally available FGF trap with anticancer effects on FGF-dependent tumors. In keeping with the non-redundant role of the FGF/FGR system in primary cilium length determination, NSC12 induces the elongation of primary cilium in FGF-dependent tumor cells, thus acting as a ciliogenic anticancer molecule in vitro and in vivo. Together, these findings demonstrate the ability of the natural FGF trap PTX3 to exert a modulatory effect on primary cilium in embryonic development and cancer. Moreover, they set the basis for the design of novel ciliogenic drugs with potential implications for the therapy of FGF-dependent tumors.


2001 ◽  
Vol 281 (1) ◽  
pp. C123-C132 ◽  
Author(s):  
Melissa A. Dechert ◽  
Jennifer M. Holder ◽  
William T. Gerthoffer

Cell migration contributes to many physiological processes and requires dynamic changes in the cytoskeleton. These migration-dependent cytoskeletal changes are partly mediated by p21-activated protein kinases (PAKs). At least four closely related isoforms, PAK1, PAK2, PAK3, and PAK4, exist in mammalian cells. In smooth muscle cells, little is known about the expression, activation, or ability of PAKs to regulate migration. Our study revealed the existence of three PAK isoforms in cultured tracheal smooth muscle cells (TSMCs). Additionally, we constructed adenoviral vectors encoding wild type and a catalytically inactive PAK1 mutant to investigate PAK activation and its role in TSMC migration. Stimulation of TSMCs with platelet-derived growth factor (PDGF) increased the activity of PAK1 over time. Overexpression of mutant PAK1 blocked PDGF-induced chemotactic cell migration. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) in cells overexpressing wild-type PAK1 was similar to vector controls; however, p38 MAPK phosphorylation was severely reduced by overexpression of the PAK1 mutant. Collectively, these results suggest a role for PAK1 in chemotactic TSMC migration that involves catalytic activity and may require signaling to p38 MAPK among other pathways.


Sign in / Sign up

Export Citation Format

Share Document