scholarly journals Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors

2006 ◽  
Vol 394 (1) ◽  
pp. 197-205 ◽  
Author(s):  
Cordelia Bisanz ◽  
Olivier Bastien ◽  
Delphine Grando ◽  
Juliette Jouhet ◽  
Eric Maréchal ◽  
...  

Toxoplasma gondii is an obligate intracellular parasite that contains a relic plastid, called the apicoplast, deriving from a secondary endosymbiosis with an ancestral alga. Metabolic labelling experiments using [14C]acetate led to a substantial production of numerous glycero- and sphingo-lipid classes in extracellular tachyzoites. Syntheses of all these lipids were affected by the herbicide haloxyfop, demonstrating that their de novo syntheses necessarily required a functional apicoplast fatty acid synthase II. The complex metabolic profiles obtained and a census of glycerolipid metabolism gene candidates indicate that synthesis is probably scattered in the apicoplast membranes [possibly for PA (phosphatidic acid), DGDG (digalactosyldiacylglycerol) and PG (phosphatidylglycerol)], the endoplasmic reticulum (for major phospholipid classes and ceramides) and mitochondria (for PA, PG and cardiolipid). Based on a bioinformatic analysis, it is proposed that apicoplast produced acyl-ACP (where ACP is acyl-carrier protein) is transferred to glycerol-3-phosphate for apicoplast glycerolipid synthesis. Acyl-ACP is also probably transported outside the apicoplast stroma and irreversibly converted into acyl-CoA. In the endoplasmic reticulum, acyl-CoA may not be transferred to a three-carbon backbone by an enzyme similar to the cytosolic plant glycerol-3-phosphate acyltransferase, but rather by a dual glycerol-3-phosphate/dihydroxyacetone-3-phosphate acyltransferase like in animal and yeast cells. We further showed that intracellular parasites could also synthesize most of their lipids from scavenged host cell precursors. The observed appearance of glycerolipids specific to either the de novo pathway in extracellular parasites (unknown glycerolipid 1 and the plant like DGDG), or the intracellular stages (unknown glycerolipid 8), may explain the necessary coexistence of both de novo parasitic acyl-lipid synthesis and recycling of host cell compounds.

2009 ◽  
Vol 191 (8) ◽  
pp. 2683-2690 ◽  
Author(s):  
Aner Gurvitz ◽  
J. Kalervo Hiltunen ◽  
Alexander J. Kastaniotis

ABSTRACT We report on Mycobacterium tuberculosis Rv0241c and Rv3389c, representing two physiologically functional 3-hydroxyacyl-thioester dehydratases (Htd). These enzymes are potentially entrained in type 2 fatty acid synthase (FASII). Mycobacterial FASII is involved in the synthesis of mycolic acids, which are the major constituents of the protective layer around the pathogen, shielding it from noxious chemicals and the host's immune system. Mycolic acids are additionally associated with the virulence and resilience of M. tuberculosis. Here, Rv0241c and Rv3389c, which are distinct from the previously identified heterodimers Rv0635-Rv0636 (HadAB) and Rv0636-Rv0637 (HadBC) but also the homodimer Rv0130 (HtdZ), were identified by expressing the corresponding candidate open reading frames in Saccharomyces cerevisiae htd2Δ cells lacking mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase activity, followed by scoring for phenotype rescue. The htd2Δ mutant fails to produce sufficient levels of lipoic acid and does not respire or grow on nonfermentable carbon sources. Soluble protein extracts made from mutant htd2Δ cells expressing mitochondrially targeted Rv0241c or Rv3389c contained 3-hydroxyacyl-thioester hydratase activity. Moreover, mutant yeast cells expressing Rv0241c or Rv3389c were able to recover their respiratory growth on glycerol medium and efficiently reduce 2,3,5-triphenyltetrazolium chloride. Additionally, expression of mitochondrial Rv0241c or Rv3389c in htd2Δ cells also restored de novo lipoic acid synthesis to 92 and 40% of the level in the wild-type strain, respectively. We propose naming Rv0241c and Rv3389c as HtdX and HtdY, respectively, and discuss the implications of our finding with reference to Rv0098, a candidate mycobacterial FabZ homologue with intrinsic thioesterase and hydratase activities that lacks the eukaryotic-like hydratase-2 motif.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


2018 ◽  
Vol 59 (6) ◽  
pp. 994-1004 ◽  
Author(s):  
David Dubois ◽  
Stella Fernandes ◽  
Souad Amiar ◽  
Sheena Dass ◽  
Nicholas J. Katris ◽  
...  

Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.


1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


2021 ◽  
Vol 7 (3) ◽  

Objectives: This study tested the effects of acylated (AG and un-acylated ghrelin (UAG) on hepatic lipid synthesis and insulin resistance (IR) from prospective to their effect on endoplasmic reticulum stress and investigated the possible underlying mechanisms. Methods: Healthy rats were divided as 4 groups (n=12/each) as control, control + AG, control + UAG, and control + AG + UAG (1:1). GA or UAG were given subcutaneously (200 ng/kg/each) for 8 weeks. Results: AG increased fasting levels of glucose and insulin resistance, increased hepatic glucose production, and impaired glucose and insulin tolerance. Besides, it increased serum levels of free fatty acids (FFAs), enhanced serum and hepatic levels of triglycerides and cholesterol, and increased lipid deposition in the livers of rats. Concomitantly, it stimulated the mRNA levels of SREBP1/2, fatty acid synthase, and protein levels of all arms of ER stress including Xbp-1, CHOP, ATF-6, and p-eIF2α, thus activating lipid synthesis and ER stress. It also reduced protein levels of p-IRS (Tyr612), p-Akt (Ser307), and increased levels of ROS, TNF-α, IL-6, and protein levels of cleaved caspase-12, p-IRS (Ser307), and p-JNK (The183/Tyr186) in rats’ livers. Administration of UAG alone or in combination with AG produced contradictory effects. However, both AG and UAG significantly increased mRNA levels of AMPK and PPARα suggesting FAs oxidation. Conclusion: AG induces hepatic steatosis and suppresses hepatic insulin signaling mainly by inducing peripheral IR that is associated with hepatic oxidative stress, inflammation, and ER stress. However, UAG alone or in combination exerts opposite effects.


2018 ◽  
Author(s):  
Nour Fattouh ◽  
Chantal Cazevieille ◽  
Frédéric Landmann

AbstractThe reproductive parasite Wolbachia are the most common endosymbionts on earth, present in a plethora of arthropod species. They have been introduced into mosquitos to successfully prevent the spread of vector-borne diseases, yet the strategies of host cell subversion underlying their obligate intracellular lifestyle remain to be explored in depth in order to gain insights into the mechanisms of pathogen-blocking. Like some other intracellular bacteria, Wolbachia reside in a host-derived vacuole in order to replicate and escape the immune surveillance. Using here the pathogen-blocking Wolbachia strain from Drosophila melanogaster, introduced into two different Drosophila cell lines, we show that Wolbachia subvert the endoplasmic reticulum to acquire their vacuolar membrane and colonize the host cell at high density. Wolbachia redistribute the endoplasmic reticulum to increase contact sites, and time lapse experiments reveal tight coupled dynamics suggesting important signalling events or nutrient uptake. They however do not affect the tubular or cisternal morphologies. A fraction of endoplasmic reticulum becomes clustered, allowing the endosymbionts to reside in between the endoplasmic reticulum and the Golgi apparatus, possibly modulating the traffic between these two organelles. Gene expression analyses and immunostaining studies suggest that Wolbachia achieve persistent infections at very high titers without triggering endoplasmic reticulum stress or enhanced ERAD-driven proteolysis, suggesting that amino acid salvage is achieved through modulation of other signalling pathways.Author summaryWolbachia are a genus of intracellular bacteria living in symbiosis with millions of arthropod species. They have the ability to block the transmission of arboviruses when introduced into mosquito vectors, by interfering with the cellular resources exploited by these viruses. Despite the biomedical interest of this symbiosis, little is known about the mechanisms by which Wolbachia survive and replicate in the host cell. We show here that the membrane composing the Wolbachia vacuole is acquired from the endoplasmic reticulum, a central organelle required for protein and lipid synthesis, and from which originates a vesicular trafficking toward the Golgi apparatus and the secretory pathway. Wolbachia modify the distribution of this organelle to increase their interactions with this source of membrane and likely of nutrients as well. In contrast to some intracellular pathogenic bacteria, the effect of Wolbachia on the cell homeostasis does not induce a stress on the endoplasmic reticulum. One of the consequences of such a stress would be an increased proteolysis used to relieve the cell from an excess of misfolded proteins. Incidentally, this shows that Wolbachia do not acquire amino acids from the host cell through this strategy.


2007 ◽  
Vol 74 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Amanda Aparecida Hayashi ◽  
Sérgio Raposo de Medeiros ◽  
Marina Hojaij Carvalho ◽  
Dante Pazzanese Duarte Lanna

Conjugated linoleic acid (CLA) has a range of biological properties, including effects on lipid metabolism, milk and body composition in animals. This study investigated the effects of dietary CLA on lactating rats and development of the suckling pups. Dams were fed either a control diet or the same diet supplemented with 25 g/kg of a fat supplement containing 540 g CLA/kg (final concentration of 13·5 g CLA/kg diet) from parturition to the 15th day post-partum. The CLA mixture used in this study contained the following isomers (per 100 g): cis-9, trans-11 (24 g); cis-10, trans-12 (35 g); cis-8, trans-10 (15 g); cis-11, trans-13 (17 g) and others (9 g). On d 15 post partum, CLA supplementation reduced milk fat content by 33% and pup growth by 21%. The milk fatty acid profile, with decreased content of short and medium chain acids, suggests CLA inhibition was more pronounced for de novo lipid synthesis. Consistent with these results, activities of fatty acid synthase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were reduced by CLA treatment in the mammary gland and liver. In contrast, the activity of NADP-malate dehydrogenase was unchanged.


2000 ◽  
Vol 347 (1) ◽  
pp. 205-209 ◽  
Author(s):  
A. Lesley JONES ◽  
Derek HERBERT ◽  
Andrew J. RUTTER ◽  
Jane E. DANCER ◽  
John L. HARWOOD

The type II fatty acid synthases (FASs) of higher plants (and Escherichia coli) contain three condensing enzymes called β-ketoacyl-ACP synthases (KAS), where ACP is acyl-carrier-protein. We have used novel derivatives of the antibiotic thiolactomycin to inhibit these enzymes. Overall de novo fatty acid biosynthesis was measured using [1-14C]acetate substrate and chloroplast preparations from pea leaves, and [1-14C]laurate was used to distinguish between the effects of the inhibitors on KAS I from those on KAS II. In addition, the activities of these enzymes, together with the short-chain condensing enzyme, KAS III, were measured directly. Six analogues were tested and two, both with extended hydrocarbon side chains, were found to be more effective inhibitors than thiolactomycin. Incubations with chloroplasts and direct assay of the individual condensing enzymes showed that all three compounds inhibited the pea FAS condensing enzymes in the order KAS II > KAS I > KAS III. These results demonstrate the general activity of thiolactomycin and its derivatives against these FAS condensation reactions, and suggest that such compounds will be useful for further detailed studies of inhibition and for use as pharmaceuticals against Type II FASs of pathogens.


2016 ◽  
Vol 113 (45) ◽  
pp. E6965-E6973 ◽  
Author(s):  
Xi Wu ◽  
Zizheng Dong ◽  
Chao J. Wang ◽  
Lincoln James Barlow ◽  
Valerie Fako ◽  
...  

Fatty acid synthase (FASN), the sole cytosolic mammalian enzyme for de novo lipid synthesis, is crucial for cancer cell survival and associates with poor prognosis. FASN overexpression has been found to cause resistance to genotoxic insults. Here we tested the hypothesis that FASN regulates DNA repair to facilitate survival against genotoxic insults and found that FASN suppresses NF-κB but increases specificity protein 1 (SP1) expression. NF-κB and SP1 bind to a composite element in the poly(ADP-ribose) polymerase 1 (PARP-1) promoter in a mutually exclusive manner and regulate PARP-1 expression. Up-regulation of PARP-1 by FASN in turn increases Ku protein recruitment and DNA repair. Furthermore, lipid deprivation suppresses SP1 expression, which is able to be rescued by palmitate supplementation. However, lipid deprivation or palmitate supplementation has no effect on NF-κB expression. Thus, FASN may regulate NF-κB and SP1 expression using different mechanisms. Altogether, we conclude that FASN regulates cellular response against genotoxic insults by up-regulating PARP-1 and DNA repair via NF-κB and SP1.


2000 ◽  
Vol 6 (S2) ◽  
pp. 270-271
Author(s):  
J. Brink ◽  
S.J. Ludtke ◽  
C.-Y. Yang ◽  
Z.-W. Gu ◽  
S. Wakil ◽  
...  

Fatty acid synthase (FAS) is the enzyme responsible for de novo synthesis of fatty acids from acetyl-CoA, malonyl-CoA and NADPH. FAS (550 kDa) is a homodimer of two multifunctional polypeptides, each with seven distinct catalytic activities and a site for the prosthetic group, 4’- phosphopantetheine, acyl carrier protein (ACP). These domains are organized from the N- to the C-terminus as follows: keto acylsynthase, acetyl/malonyl transacetylase, dehydratase, the interdomain, enoyl reductase, ketoreductase, ACP and thioesterase. The two polypeptides are held together through the interdomain and oriented in an anti-parallel manner, each contributing complementary half sites and giving rise to two independently active centers for palmitate synthesis. Interest in FAS arises from its involvement in human disorders, such as obesity, hyperlipidemia and carcinogenesis.Human FAS purified from a breast cancer cell line, ZR75-1, was vitrified at 50-70 μg/ml on holey grids in the presence of NADPH and acetyl-CoA and kept at -166°C in a Gatan 626 cryo-holder.


Sign in / Sign up

Export Citation Format

Share Document