scholarly journals Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretory pathway

2011 ◽  
Vol 435 (1) ◽  
pp. 259-266 ◽  
Author(s):  
Yi-Hsuan Wu ◽  
Avery G. Frey ◽  
David J. Eide

The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae are members of the cation diffusion facilitator family of zinc transporters. These proteins form heteromeric complexes that transport zinc into the ER (endoplasmic reticulum). Previous studies suggested that the ZRG17 gene is regulated in response to zinc status by the Zap1 transcription factor. Zap1 activates the expression of many genes in zinc-deficient cells. In the present study, we assessed whether ZRG17 is a direct Zap1 target gene. We showed that ZRG17 mRNA levels were elevated in zinc-limited cells in a Zap1-dependent manner and were also elevated in zinc-replete cells expressing a constitutively active allele of Zap1. Furthermore, Zrg17 protein levels correlated closely with mRNA levels. A candidate Zap1-binding site [ZRE (zinc-responsive element)] in the ZRG17 promoter was required for this induction. Using electrophoretic mobility-shift assays and chromatin immunoprecipitation, we demonstrated that Zap1 binds specifically to the ZRG17 ZRE both in vitro and in vivo. By using a chromosomal ZRG17 mutant with a non-functional ZRE, we found that Zap1 induction of ZRG17 is required for ER function as indicated by elevated ER stress under zinc-limited conditions. Together, these results establish that ZRG17 is a direct Zap1 target gene and its regulation has biological importance in maintaining ER function.

2020 ◽  
Vol 295 (52) ◽  
pp. 18134-18147
Author(s):  
Xin Xu ◽  
Yihua Zhang ◽  
Junjie Zhang ◽  
Xiaotian Zhang

NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3′-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.


2017 ◽  
Vol 59 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Yajie Guo ◽  
Junjie Yu ◽  
Chunxia Wang ◽  
Kai Li ◽  
Bin Liu ◽  
...  

MicroRNAs, a class of small noncoding RNAs, are implicated in controlling a variety of biological processes. We have shown that leucine deprivation suppresses lipogenesis by inhibiting fatty acid synthase (FAS) expression in the liver previously; the aim of our current study is to investigate which kind of microRNA is involved in the regulation of FAS expression in response to leucine deprivation. Here, we indicated that microRNA-212-5p specifically binds to mouse FAS 3′UTR and inhibits its activity. Leucine deficiency significantly increased the mRNA levels of miR-212-5p in the livers of mice. Further studies proved that miR-212-5p also directly binds to the 3′UTR of stearoyl-CoA desaturase-1 (SCD1) to inhibit its activity. Overexpression of miR-212-5p decreases the protein levels of FAS and SCD1 in vitro and in vivo, and silencing of miR-212-5p has the opposite effects in mouse primary hepatocytes. Moreover, overexpression of miR-212-5p significantly decreases triglyceride (TG) accumulation in primary hepatocytes and in the livers of mice injected with adenovirus-mediated overexpressing of miR-212-5p (Ad-miR-212). Interestingly, inhibition of miR-212-5p reverses the suppressive effects of leucine deficiency on FAS and SCD1 expression, as well as TG accumulation in mouse primary hepatocytes. Finally, we demonstrate that leucine deficiency induces the expression of miR-212-5p in a GCN2/ATF4-dependent manner. Taken together, our results demonstrate a novel function of hepatic miR-212-5p in the regulation of lipid metabolism which represents a potential therapeutic target for the treatment of non-alcohol fatty liver diseases (NAFLD).


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 759-769 ◽  
Author(s):  
F P Yuan ◽  
X Li ◽  
J Lin ◽  
C Schwabe ◽  
E E Büllesbach ◽  
...  

LH receptor knockout (LhrKO) male mice exhibit a bilateral cryptorchidism resulting from a developmental defect in the gubernaculum during the inguinoscrotal phase of testis descent, which is corrected by testosterone replacement therapy (TRT).In vivoandin vitroexperiments were conducted to investigate the roles of the androgen receptor (AR) and RXFP2 signals in regulation of gubernacular development inLhrKO animals. This study demonstrated that AR and RXFP2 proteins were expressed in the gubernaculum during the entire postnatal period. TRT normalized gubernacular RXFP2 protein levels inLhrKO mice. Organ and primary cell cultures of gubernacula showed that 5α-dihydrotestosterone (DHT) upregulated the expression ofRxfp2which was abolished by the addition of an AR antagonist, flutamide. A single s.c. testosterone injection also led to a significant increase inRxfp2mRNA levels in a time-dependent fashion inLhrKO animals. DHT, natural and synthetic insulin-like peptide 3 (INSL3), or relaxin alone did not affect proliferation of gubernacular mesenchymal cells, while co-treatments of DHT with either INSL3 or relaxin resulted in an increase in cell proliferation, and they also enhanced the mesenchymal cell differentiation toward the myogenic pathway, which included a decrease in a mesenchymal cell marker, CD44 and the expression of troponin. These effects were attenuated by the addition of flutamide, siRNA-mediatedRxfp2knockdown, or by an INSL3 antagonist. Co-administration of an INSL3 antagonist curtailed TRT-induced inguinoscrotal testis descent inLhrKO mice. Our findings indicate that the RXFP2 signaling pathway plays an important role in mediating androgen action to stimulate gubernaculum development during inguinoscrotal testis descent.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2020 ◽  
Vol 21 (2) ◽  
pp. 472 ◽  
Author(s):  
Yuri Cho ◽  
Min Ji Park ◽  
Koeun Kim ◽  
Jae-Young Park ◽  
Jihye Kim ◽  
...  

Abstract: Background: Crosstalk between tumors and their microenvironment plays a crucial role in the progression of hepatocellular carcinoma (HCC). However, there is little existing information about the key signaling molecule that modulates tumor-stroma crosstalk. Methods: Complementary DNA (cDNA) microarray analysis was performed to identify the key molecule in tumor-stroma crosstalk. Subcutaneous xenograft in vivo murine model, immunoblotting, immunofluorescence, and real-time polymerase chain reaction using HCC cells and tissues were performed. Results: The key molecule, regenerating gene protein-3A (REG3A), was most significantly enhanced when coculturing HCC cells and activated human hepatic stellate cells (HSCs) (+8.2 log) compared with monoculturing HCC cells using cDNA microarray analysis. Downregulation of REG3A using small interfering RNA significantly decreased the proliferation of HSC-cocultured HCC cells in vitro and in vivo, and enhanced deoxycholic acid-induced HCC cell apoptosis. Crosstalk-induced REG3A upregulation was modulated by platelet-derived growth factor ββ (PDGF-ββ) in p42/44-dependent manner. REG3A mRNA levels in human HCC tissues were upregulated 1.8-fold compared with non-tumor tissues and positively correlated with PDGF-ββ levels. Conclusions: REG3A/p42/44 pathway/PDGF-ββ signaling plays a significant role in hepatocarcinogenesis via tumor-stroma crosstalk. Targeting REG3A is a potential novel therapeutic target for the management of HCCs by inhibiting crosstalk between HCC cells and HSCs.


2000 ◽  
Vol 68 (7) ◽  
pp. 4064-4074 ◽  
Author(s):  
Isabelle Batisson ◽  
Maurice Der Vartanian ◽  
Brigitte Gaillard-Martinie ◽  
Michel Contrepois

ABSTRACT We have successfully used the major subunit ClpG ofEscherichia coli CS31A fimbriae as an antigenic and immunogenic exposure-delivery vector for various heterologous peptides varying in nature and length. However, the ability of ClpG as a carrier to maintain in vitro and in vivo the native biological properties of passenger peptide has not yet been reported. To address this possibility, we genetically fused peptides containing all or part of the E. coli human heat-stable enterotoxin (STh) sequence to the amino or carboxyl ends of ClpG. Using antibodies to the ClpG and STh portions for detecting the hybrids; AMS (4-acetamido-4′-maleimidylstilbene-2,2′-disulfonate), a potent free thiol-trapping reagent, for determining the redox state of STh in the fusion; and the suckling mouse assay for enterotoxicity, we demonstrated that all ClpG-STh proteins were secreted in vitro and in vivo outside the E. coli cells in a heat-stable active oxidized (disulfide-bonded) form. Indeed, in contrast to many earlier studies, blocking the natural NH2 or COOH extremities of STh had, in all cases, no drastic effect on cell release and toxin activity. Only antigenicity of STh C-terminally extended with ClpG was strongly affected in a conformation-dependent manner. These results suggest that the STh activity was not altered by the chimeric structure, and therefore that, like the natural toxin, STh in the fusion had a spatial structure flexible enough to be compatible with secretion and enterotoxicity (folding and STh receptor recognition). Our study also indicates that disulfide bonds were essential for enterotoxicity but not for release, that spontaneous oxidation by molecular oxygen occurred in vitro in the medium, and that the E. coli cell-bound toxin activity in vivo resulted from an effective export processing of hybrids and not cell lysis. None of the ClpG-STh subunits formed hybrid CS31A-STh fimbriae at the cell surface ofE. coli, and a strong decrease in the toxin activity was observed in the absence of CS31A helper proteins. In fact, chimeras translocated across the outer membrane as a free folded monomer once they were guided into the periplasm by the ClpG leader peptide through the CS31A-dependent secretory pathway. In summary, ClpG appears highly attractive as a carrier reporter protein for basic and applied research through the engineering of E. coli for culture supernatant delivery of an active cysteine-containing protein, such as the heat-stable enterotoxin.


2015 ◽  
Vol 26 (16) ◽  
pp. 2939-2954 ◽  
Author(s):  
Sónia Barbosa ◽  
Suzanne Carreira ◽  
Daniel Bailey ◽  
Fernando Abaitua ◽  
Peter O'Hare

CREB‑H, an endoplasmic reticulum–anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87–S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCFFbw1aE3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV.


2009 ◽  
Vol 425 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Raquel  Castro-Prego ◽  
Mónica Lamas-Maceiras ◽  
Pilar Soengas ◽  
Isabel Carneiro ◽  
Isabel González-Siso ◽  
...  

Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1–Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides −557 to −376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.


Sign in / Sign up

Export Citation Format

Share Document