scholarly journals 5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma

1983 ◽  
Vol 210 (3) ◽  
pp. 803-810 ◽  
Author(s):  
J C Hutton ◽  
M Peshavaria ◽  
N E Tooke

Mechanisms of transport of 5-hydroxytryptamine in the pancreatic B-cell were investigated by using cell suspensions and secretory granules prepared from a transplantable rat insulinoma. (1) Cells incubated with 5-hydroxy[G-3H]tryptamine at concentrations ranging from 0.1 microM to 5 mM accumulated the radioisotope principally by a simple diffusion process. The incorporated radioactivity was recovered principally as the parent molecule and was recovered predominantly in soluble protein and secretory-granule fractions prepared from the tissue. (2) Isolated granules incubated in buffered iso-osmotic medium without ATP accumulated the amine to concentrations up to 38-fold that of the medium. This process was insensitive to reserpine and occurred over a wide range of 5-hydroxytryptamine concentrations (0.075 microM-25 mM). Above 5 mM, 5-hydroxytryptamine accumulation decreased in parallel with the breakdown of the delta pH across the granule membrane. Uptake was favoured by alkaline media and was reduced by the addition of (NH4)2SO4. In both cases a close correlation was observed between uptake and the transmembrane delta pH, a finding that suggested that 5-hydroxytryptamine permeated the membrane as the free base and equilibrated across the membrane with the delta pH. Binding of 5-hydroxytryptamine to granule constituents also played a part in this process. ATP caused a further doubling of granule 5-hydroxytryptamine uptake by a process that was sensitive to reserpine (0.5 microM). Inhibitor studies suggested that amine transport in this instance was linked to the activity of the granule membrane proton-translocating ATPase. (3) It was concluded that the uptake of amines driven by proton gradients across the insulin-granule membrane could account for the accumulation in vivo of amines in the B-cell.

1984 ◽  
Vol 62 (5) ◽  
pp. 502-511 ◽  
Author(s):  
M. F. Bader ◽  
F. Bernier-Valentin ◽  
B. Rousset ◽  
D. Aunis

When chromaffin cells from the bovine adrenal medulla are maintained in culture, they develop neuritelike processes which end with growth-cone-like structures. Chromaffin granules were found to migrate from the cell body to the neurite endings. Thus, the intracellular transport of secretory granules, existing in vivo, seems to occur in an exaggerated way in the cultured cells. These cells offer an excellent model for studying the mechanism of transport, particularly the role of microtubules. By immunofluorescent staining, we observed that tubulin antibodies decorate a complex network visible along the neurites. Colchicine treatment induced the disappearance of this network followed by a return of granules in the cell body and a retraction of neurites. To test the presence of tubulin in the chromaffin granule membrane, we used two-dimensional gel electrophoresis and a radioimmunoassay. Our results indicate that tubulin is not a significant component of chromaffin granules. However, binding experiments show that granule membranes are able to bind tubulin through high affinity binding sites. These results show that microtubules appear involved in neurite formation and probably in granule transport. Tubulin is not an integral constituent of the granule membrane, but is present as a result of a reversible specific binding. This insertion of tubulin into the membrane might represent a step in the association between microtubules and secretory granules.


1990 ◽  
Vol 259 (3) ◽  
pp. C413-C420 ◽  
Author(s):  
K. W. Gasser ◽  
U. Hopfer

The Cl- transport pathways in secretory granules isolated from the parotid glands of rats were characterized by the technique of ionophore-induced lysis in defined salt solutions. The granules were shown to possess a Cl- conductance that exhibited a distinct anion selectivity with a sequence I- greater than Br- greater than Cl- greater than F- greater than SO4(2-) much greater than gluconate-. This conductance could be reduced approximately 40% by the stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) from the cytoplasmic side; the half-maximal concentration for inhibition was 50 microM. Furthermore, the apparent Cl- conductance was reduced by outwardly directed granule H+ gradients and stimulated by inwardly directed gradients. An outwardly directed H+ gradient mimics the in vivo environment and may serve in a regulatory capacity, providing for a tonic inhibition of transport until the granule fuses with the luminal membrane. The granules also possessed a Cl(-)-HCO3- exchange based on electroneutrality of Cl- uptake and stimulation of this uptake by HCO3-. This pathway displayed a different anion selectivity, I- greater than Br- greater than F- greater than Cl- much greater than SO4(2-) much greater than gluconate-, and was not inhibited by SITS on the cytoplasmic side. The presence of these electrolyte transport pathways in the granule membrane is consistent with the production of primary fluid by parotid acinar cells after fusion of granules with the luminal plasma membrane.


1971 ◽  
Vol 50 (1) ◽  
pp. 187-200 ◽  
Author(s):  
Abraham Amsterdam ◽  
Michael Schramm ◽  
Itzhak Ohad ◽  
Yoram Salomon ◽  
Zvi Selinger

After enzyme secretion the membrane of the secretory granule, which had been fused to the cell membrane, was resorbed into the cell. Experiments were therefore carried out to test whether formation of new secretory granules involves reutilization of the resorbed membrane or synthesis of a new membrane, de novo, from amino acids. Incorporation of amino acids-14C into proteins of various cell fractions was measured in vivo, 30, 120, and. 300 min after labeling. At all times the specific radioactivity of the secretory granule membrane was about equal to that of the granule's exportable content. At 120 and 300 min the specific radioactivity of the granule membrane and of the granule content was much higher than that of any other subcellular fraction. It is therefore concluded that the protein of the membrane is synthesized de novo concomitantly with the exportable protein. The proteins of the granule membrane could be distinguished from those of the granule content by gel electrophoresis. All major bands were labeled proportionately to their staining intensity. The amino acid composition of the secretory granule membrane was markedly different from that of the granule's content and also from that of the mitochondrial membrane. The granule membrane showed a high proline content, 30 moles/100 moles amino acids. The analyses show that the radioactivity of the granule membrane is indeed inherent in its proteins and is not due to contamination by other fractions. The possibility is considered that the exportable protein leaves the endoplasmic reticulum already enveloped by the newly synthesized membrane.


2002 ◽  
Vol 46 (5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Pamela R. Tessier ◽  
Myo-Kyoung Kim ◽  
Wen Zhou ◽  
Dawei Xuan ◽  
Chonghua Li ◽  
...  

ABSTRACT The pharmacodynamic profile of clarithromycin (CLR) was evaluated with a murine model of pneumonia. Eight Streptococcus pneumoniae isolates, including three macrolide-sensitive and five macrolide-resistant strains, were inoculated intratracheally into immunocompromised ICR mice as 108-CFU bacterial suspensions. Orally administered CLR daily doses ranging from 5 to 600 mg/kg of body weight were given over 5 days, during which animal survival was monitored. The bacterial density in lung tissues was examined after 24 h of CLR treatment and in control groups. Pharmacokinetic analysis of CLR in mice demonstrated that the regimen of 150 mg/kg twice a day was representative of human pharmacokinetics and was used to compare the efficacy of CLR against sensitive and resistant S. pneumoniae strains. Immunocompetent CBA/J mice were also infected and treated as described above and evaluated for bacterial density and survival to assess the effect of the presence of leukocytes. All three pharmacodynamic parameters, the duration (percent) of the time that serum CLR concentrations remain above the MIC (%T>MIC), the ratio of the area under the concentration-time curve from 0 to 24 h (AUC0-24) to the MIC, and the ratio of the maximum concentration of drug in serum to the MIC, were found to be closely correlated to CLR bacterial efficacy (P < 0.001). Furthermore, all parameters had close correlation to bacterial density (r 2 = 0.72 to 0.82), median survival (r 2 = 0.93 to 0.94), and total percent survival (r 2 = 0.91 to 0.92). These in vivo data suggest that the bacterial activity of CLR is closely correlated with all three parameters over a wide range of exposures and, as a consequence of parameter interdependency, AUC0-24/MIC is the most reasonable predictor of antibiotic efficacy. In this neutropenic pneumonia model, CLR was less efficacious against S. pneumoniae strains for which MICs were ≥4 μg/ml. However, the presence of leukocytes in the immunocompetent mice resulted in improved bactericidal activity, relative to that in the neutropenic animals, despite an MIC of 4 μg/ml.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4519-4529 ◽  
Author(s):  
Waleed Alduaij ◽  
Andrei Ivanov ◽  
Jamie Honeychurch ◽  
Eleanor J. Cheadle ◽  
Sandeep Potluri ◽  
...  

Abstract The anti-CD20 mAb rituximab has substantially improved the clinical outcome of patients with a wide range of B-cell malignancies. However, many patients relapse or fail to respond to rituximab, and thus there is intense investigation into the development of novel anti-CD20 mAbs with improved therapeutic efficacy. Although Fc-FcγR interactions appear to underlie much of the therapeutic success with rituximab, certain type II anti-CD20 mAbs efficiently induce programmed cell death (PCD), whereas rituximab-like type I anti-CD20 mAbs do not. Here, we show that the humanized, glycoengineered anti-CD20 mAb GA101 and derivatives harboring non-glycoengineered Fc regions are type II mAb that trigger nonapoptotic PCD in a range of B-lymphoma cell lines and primary B-cell malignancies. We demonstrate that GA101-induced cell death is dependent on actin reorganization, can be abrogated by inhibitors of actin polymerization, and is independent of BCL-2 overexpression and caspase activation. GA101-induced PCD is executed by lysosomes which disperse their contents into the cytoplasm and surrounding environment. Taken together, these findings reveal that GA101 is able to potently elicit actin-dependent, lysosomal cell death, which may potentially lead to improved clearance of B-cell malignancies in vivo.


2020 ◽  
pp. jlr.TR120000806 ◽  
Author(s):  
Raju V. S. Rajala

The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 507-507
Author(s):  
Yusuke Shono ◽  
Andrea Z. Tuckett ◽  
Hsiou-Chi Liou ◽  
Samedy Ouk ◽  
Ekaterina Doubrovina ◽  
...  

Abstract NF-kB plays important roles in immunity and oncogenesis, indicating that therapeutic targeting of this pathway could be beneficial in various clinical settings; however,an NF-kB-specific inhibitor does not exist in clinical practice to date. One approach toward development of such a compound is small-molecule-mediated direct inhibition of one or several members of the NF-kB family of transcription factors, a network that comprises five structurally related proteins including p50, p52, RelA, RelB and c-Rel. After screening of a library of 15,000 small molecules with a biochemical assay, we identified two scaffolds with inhibitory activity specific for the NF-kB subunit c-Rel. These scaffolds act as direct c-Rel inhibitors by modifying the conformation of the c-Rel protein, thus preventing DNA binding. We previously reported that in vitro treatment of T cells with the thiohydantoin IT-603 induces c-Rel deficiency, resulting in suppression of T cell alloactivation without compromising T cell activation triggered by recognition of tumor-associated or viral antigens (Shono et al., Cancer Discovery, 2014). Here, we for the first time demonstrate in vivo efficacy of a c-Rel inhibitor treatment regimen in mouse models of graft-versus-host disease (GVHD) and graft-versus-lymphoma (GVL), as well as xenograft models of human B cell lymphomas, revealing that inhibition of c-Rel activity allows not only for suppression of GVHD while retaining GVL activity, but it also mediates promising anti-lymphoma effects. We first show that the novel small molecule IT-901 is a more potent c-Rel inhibitor than IT-603 and has a superior pharmacokinetic profile. IT-901 displayed significantly improved in vivo efficacy, ameliorating GVHD while preserving the anti-lymphoma activity of T cells (Figure 1a,b). Recent genetic evidence has established a pathogenetic role for NF-kB signaling in lymphoid malignancies. We therefore sought to explore the potential of IT-901 for targeted therapy of human lymphomas. We analyzed six representative diffuse large B cell lymphoma (DLBCL) cell lines including activated B-like (ABC; HBL1, TMD8, U2932) and germinal center B-like (GCB; Ly19, SU-DHL4, SU-DHL8) cell lines for nuclear translocation of c-Rel and found that c-Rel was constitutively active in all cell lines. To examine if c-Rel inhibition with IT-901 alters cytokine production by DLBCL cells, we analyzed cytokine levels in the supernatant after in vitro incubation with IT-901. IT-901 treatment resulted in decreased levels of a wide range of cytokines in TMD8 cells, with the notable exceptions of interleukin 8 (IL-8), tumor necrosis factor (TNF)-α, and TNF-β (P<0.05, Figure 2a). We next investigated if IT-901 treatment affected growth of DLBCL cells in vitro. We found that IT-901 dose-dependently inhibited cell growth of both ABC and GCB cell lines with IC50 values between 3µM to 4µM. Interestingly, IT-901 at a concentration of 3µM did not have an anti-proliferative effect on TMD8 cells, suggesting that cytokines such as IL-8 and TNF-α may be upregulated as a mechanism of resistance to c-Rel inhibition by activating alternative survival pathways. Indeed, in vitro treatment of TMD8 cells with a TNF-α neutralizing antibody inhibited cell growth, and this effect was enhanced when combining TNF-α blockade with c-Rel inhibition (P<0.01, Figure 2b). Furthermore, we detected high HMOX1 protein levels in DLBCL cells treated with IT-901, suggesting that HMOX1 expression was induced, which is a hallmark of oxidative stress. Indeed IT-901 induced production of high levels of reactive oxygen species in lymphoma cells. This suggests that induction of oxidative stress may be a second mechanism contributing to the anti-lymphoma activity of IT-901. We next analyzed primary lymphoma cells and found that the c-Rel gene is widely expressed in human B cell malignancies and frequently amplified in DLBCL and EBV-transformed B cells. Importantly, intranuclear analysis of the c-Rel protein demonstrated that this transcription factor can be constitutively active in a wide range of human lymphomas. IT-901 efficiently inhibited growth of EBV-transformed B cells in vitro, and mediated significant anti-lymphoma activity in a xenograft model of EBV-induced lymphoma (P<0.01, Figure 2c). In summary, our findings underscore multiple therapeutic benefits and great potential for clinical translation of a novel c-Rel inhibitor. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010026
Author(s):  
Hang Thi Thu Nguyen ◽  
Robin B. Guevarra ◽  
Stefan Magez ◽  
Magdalena Radwanska

Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.


1998 ◽  
Vol 80 (12) ◽  
pp. 1002-1007 ◽  
Author(s):  
Jef Emeis ◽  
Henk Bilo ◽  
Coen Stehouwer ◽  
Claus Thomsen ◽  
Ole Rasmussen ◽  
...  

SummaryElevated plasma von Willebrand factor (vWf) levels are found in diabetes and other vasculopathies, and predict cardiovascular mortality. vWf is stored and released from endothelial cell secretory granules, along with equimolar amounts of its propeptide (vWf:AgII). In the present study, we examined plasma propeptide levels as a marker of endothelial secretion in vivo, using an ELISA based on monoclonal antibodies. vWf but not propeptide levels are influenced by blood groups, explaining in part the smaller variation in plasma propeptide levels among normal individuals. In both controls and insulin-dependent diabetic patients, we found a close correlation between propeptide and immunoreactive vWf levels (r2 = 0.54, p <0.0001). vWf and propeptide were elevated in patient subgroups with microalbuminuria or overt diabetic nephropathy, whereas only the propeptide was significantly elevated in the normoalbuminuric subgroup. This observation suggests that in conjunction with vWf, propeptide measurements may improve the identification of endothelial activation, which occurs frequently even without increased urinary albumin excretion. In 12 NIDDM patients, a 3-week diet enriched in monounsaturated fat (MUFA) resulted in parallel decreases in vWf (-22%, p <0.05) and propeptide (-17%, p <0.05) levels, indicating that the experimental diet affected endothelial secretion rather than vWf catabolism. A carbohydrate-enriched control diet did not significantly influence either marker.Our results suggest that concomittant determinations of plasma vWf and propeptide are useful tools to assess endothelial activation in vivo, and reinforce our previous conclusion that a diet rich in MUFA can improve endothelial function in NIDDM.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 456
Author(s):  
Alessio Ugolini ◽  
Marianna Nuti

The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document