scholarly journals Platelet-derived growth factors-AA and -BB regulate collagen and collagenase gene expression differentially in human fibroblasts

1995 ◽  
Vol 310 (2) ◽  
pp. 585-588 ◽  
Author(s):  
E M L Tan ◽  
H Qin ◽  
S H Kennedy ◽  
S Rouda ◽  
J W Fox ◽  
...  

Platelet-derived growth factor (PDGF) is a mitogen associated with tissue repair, a process involving collagen synthesis and remodelling by interstitial collagenase. This study examines and compares the regulation of interstitial collagenase and collagen gene expression by PDGF-AA and -BB in human fibroblasts. Time-course analysis showed that neither PDGF-AA or -BB had a consistent effect on the expression of pro-alpha 1(I) or pro-alpha 2(I) type-I collagen genes. In contrast, interstitial collagenase gene expression was found to be consistently up-regulated severalfold by PDGF-BB. Enhanced expression of the collagenase gene was not apparently due to up-regulation of its promoter activity in human dermal fibroblasts, as indicated by transient and stable transfection experiments. Unlike PDGF-BB, PDGF-AA did not alter collagenase mRNA levels under low-serum culture conditions. Thus, the biological activities of the PDGF homodimers are different, with PDGF-BB being clearly more potent than PDGF-AA in its regulation of collagenase gene expression.

1995 ◽  
Vol 308 (3) ◽  
pp. 743-747 ◽  
Author(s):  
E G Hitraya ◽  
J Varga ◽  
S A Jimenez

We investigated the effect of heat shock on the expression of the collagenase gene in normal human synovial and dermal fibroblasts. Heat shock (42-44 degrees C for 1 h) caused a marked increase in heat-shock protein 70 (HSP-70) mRNA levels, followed by a delayed increase in collagenase mRNA levels, in both cell types. Pretreatment with cycloheximide had no effect on the heat-shock-induced increase in HSP-70 mRNA expression, but abrogated the induction of collagenase mRNA during the recovery. To study the mechanisms of collagenase-gene induction by heat shock, the transcriptional activity of a collagenase-promoter-driven chloramphenicol acetyltransferase (CAT) reporter gene was examined in transient transfection experiments. Heat shock was followed by a > 2-fold increase in CAT activity driven by a 3.8 kb fragment of the collagenase promoter, or by a construct containing an AP-1 binding site. A mutation in the AP-1 binding site abolished the effect of heat shock. Electrophoretic-mobility-shift assays revealed a marked increase in DNA-binding activity specific for the AP-1 binding site in nuclear extracts prepared from synovial fibroblasts recovering from heat shock. These results indicate that heat shock causes a delayed increase in collagenase-gene expression in human fibroblasts, and suggests that this stimulation involves, at least in part, transcriptional activation through an AP-1 binding site. Heat shock appears to initiate a programme of cellular events resulting in collagenase-gene expression, and therefore may contribute to connective-tissue degradation in disease states.


1992 ◽  
Vol 284 (3) ◽  
pp. 629-632 ◽  
Author(s):  
A Mauviel ◽  
C H Evans ◽  
J Uitto

Leukoregulin (LR), a T-cell-derived growth factor, modulates fibroblast functions in vitro [Mauviel, Rédini, Hartmann, Loyau & Pujol (1991) J. Cell Biol. 113, 1455-1462]. In the present study, incubation of human dermal fibroblasts with LR (0.1-2 units/ml) resulted in decreases in the mRNA steady-state levels for alpha 1(I), alpha 2(I) and alpha 1(III), but not alpha 2(V), collagen genes. LR also down-regulated alpha 2(I) collagen promoter activity in transient cell transfections of control cells as well as those incubated with transforming growth factor-beta, a potent up-regulator of collagen type I gene expression. Thus LR is a strong inhibitor of type I collagen gene expression, acting at the level of transcription.


2011 ◽  
Vol 15 (4) ◽  
pp. 404-413 ◽  
Author(s):  
Huina Zhang ◽  
Sushan Yang ◽  
Lin Wang ◽  
Paul Park ◽  
Frank La Marca ◽  
...  

Object In this study, the authors' goal was to investigate the long-term progression of disc degeneration and the participating mechanisms induced by needle puncture in a rat caudal disc model . Methods The C5–6 and C7–8 intervertebral discs of the caudal spine in rats were stabbed laterally using 21-gauge hypodermic needles to a depth of 5 mm from the subcutaneous surface with the aid of fluoroscopy. Signs of degeneration in the disc of the tail were analyzed from Day 1 to Week 30 by in vivo MR imaging, histology, and biochemical and/or molecular analyses. Results Magnetic resonance imaging showed a progressive decrease in T2 density and MR imaging index throughout the entire investigation, starting at Day 1 after the needle puncture. However, histological scores revealed a bimodal pattern, showing that severity increased in the first 17 days, declined thereafter, and increased again by 30 weeks. Gene expression analysis showed a transient up-regulation in gene expression of aggrecan, type II collagen, and BMP-2, and inhibition of type I collagen. The MMP-3 mRNA levels were up-regulated at all tested time points within 6 weeks postinjury. Furthermore, the degenerated disc did not recover spontaneously, as shown by decreases in T2 density, MR imaging index, and sulfated glycosaminoglycan content in conjunction with increases in histological scores at 15 and 30 weeks postsurgery. Conclusions This study demonstrates that needle puncture into a tail disc in the rat induces a rapid and progressive disc degeneration process without spontaneous recovery. Changes in gene expression profiles of the disc matrix molecules as well as anabolic and catabolic factors at early time points further delineate the mechanism of disc degeneration in this newly developed animal model.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.2-1095
Author(s):  
A. S. Siebuhr ◽  
S. F. Madsen ◽  
M. Karsdal ◽  
A. C. Bay-Jensen ◽  
P. Juhl

Background:Systemic sclerosis has vascular, inflammatory and fibrotic components, which may be associated with different growth factors and cytokines. Platelet derived growth factor (PDGF) is associated with the vasculature, whereas tumor necrosis factor beta (TGFβ) is associated with inflammation and fibrosis. We have developed a fibroblast model system of dermal fibrosis for anti-fibrotic drugs testing, but the effect of the fibroblasts mechanistic properties are unknown.Objectives:We investigated different mechanical capacities of PDGF and TGFβ treated human healthy dermal fibroblasts in the SiaJ setting.Methods:Primary human healthy dermal fibroblasts were grown in DMEM medium containing 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid for up to 17 days. A wound was induced by scratching the cells at 0, 1, 3 or 7 days after treatment initiation. Wound closure was followed for 3 days. Contraction capacity was tested by creating gels of human fibroblasts produced collagens containing dermal fibroblasts and contraction was assessed at day 2 by calculating the percentage of gel size to total well size. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Gene expression was analyzed after 2 days in culture. Statistical analyses included One-way ANOVA and student’s t-test.Results:Generally, PDGF closed the wound in half the time of w/o and TGFβ, when treatment and cells are added concurrently or scratched one day after treatment initiation. When treatments were added 3 or 7 days prior to scratch, the cells treated with PDGF had proliferated to a higher degree than w/o and TGFβ. A consequence of this, was that when cells were scratch the sheet of cells produced was lifted from the bottom and fold over itself, leaving a much greater scratch than in the other treatments. However, despite this increased gap the PDGF treated cells closed the wound at the same time as w/o and TGFβ, confirming the results of the cells scratched at day 0 and 1.Inhibition of contraction by ML-7 of otherwise untreated cells inhibited contraction significantly compared to untreated cells alone (p=0.0009). Contraction was increased in both TGFβ and PDGF treated cells compared to untreated cells (both p<0.0001). TGFβ+ ML-7 inhibited the contraction to the level of w/o (p=0.0024), which was only 35% of ML-7 alone. In the contraction study the cells were terminated after 2 days of culture, thus prior to when biomarker of ECM remodeling is usually assessed. However, FBN-C was detectable and a significant release of fibronectin by TGFβ and PDGF compared to w/o was found in the supernatant (both p<0.0001). The gene expression of FBN was only increased with TGFβ (p<0.05) and not PDGF. ML-7 alone tended to decrease FBN-C and in combination with TGFβ the FBN level was significantly decreased compared to TGFβ alone (p<0.0001). However, the level of TGFβ+ML-7 was significantly higher than ML-7 alone (p=0.038).TGFβ increased the gene expression of most genes assessed, except Col6a1. PDGF increased the gene expression of Col3a1, Col5a1 and Col6a1 above the critical fold change of 2, but only significantly in Col5a1 and Col6a1 (both p<0.05).Conclusion:This study demonstrates that TGFβ and PDGF have different mechanical capacities in human healthy dermal fibroblasts; TGFβ increased gene expression of ECM related genes, such as collagens and have increased FBN release in the supernatant already 2 days after initial treatment. PDGF has increased contraction, proliferation and migratory capacities and less expression of ECM related genes and proteins.Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Sofie Falkenløve Madsen: None declared, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S., Pernille Juhl Employee of: Nordic Bioscience


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


1990 ◽  
Vol 268 (1) ◽  
pp. 225-230 ◽  
Author(s):  
A E Canfield ◽  
R P Boot-Handford ◽  
A M Schor

Endothelial cells plated on the surface of a two-dimensional substratum (gelatin-coated dishes, dishes coated with native type I collagen or collagen gels) form a cobblestone monolayer at confluence, whereas cells plated within a three-dimensional gel matrix elongate into a sprouting morphology and self-associate into tube-like structures. In this study, we have compared the synthesis of thrombospondin by quiescent endothelial cells displaying (a) the same morphological phenotype (cobblestone) on different substrata (gelatin and collagen) and (b) different morphological phenotypes (cobblestone and sprouting) on the same substratum (collagen). We demonstrate that thrombospondin is a major biosynthetic product of confluent, quiescent cells cultured on dishes coated with either gelatin or collagen, and that the synthesis of this protein is markedly decreased when cells are plated on or in three-dimensional collagen gels. Moreover, we demonstrate that cells plated in gel (sprouting) secrete less thrombospondin than do cells plated on the gel surface (cobblestone). The regulation of thrombospondin synthesis is reversible and occurs at the level of transcription, as steady-state mRNA levels for thrombospondin decrease in a manner comparable with the levels of protein secreted by these cells. We also show that mRNA levels for laminin B2 chains are increased when cells are cultured on and in collagen gels compared with on gelatin-coated dishes, suggesting that the syntheses of thrombospondin and laminin are regulated by different mechanisms. When cells are cultured on gelatin- or collagen-coated dishes, thrombospondin gene expression is directly proportional to the proliferative state of the cultures. By contrast, the synthesis of thrombospondin by cells cultured on collagen gels remains at equally low levels whether they are labelled when they are sparse and rapidly proliferating or when they are confluent and quiescent. Fibronectin synthesis was found to increase with increasing confluency of the cells plated on all three substrata. These results demonstrate that thrombospondin gene expression is modulated by cell shape, cell proliferation and the nature of the substratum used for cell culture.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 454-454
Author(s):  
Attilio Olivieri ◽  
Silvia Svegliati ◽  
Nadia Campelli ◽  
Michele Maria Luchetti ◽  
Silvia Trappolini ◽  
...  

Abstract Background Experimental data are consistent with the hypothesis that activation of the PDGF receptor (PDGFR) is characteristic of scleroderma (SSc) fibroblasts and may contribute to their activation. We have recently demonstrated that fibroblasts from SSc patients contain high Ha Ras and ROS (Reactive Oxygen Species) levels and constitutive activation of ERK1/2 (Svegliati et al: JBC in press). Furthermore, SSc patients have circulating auto-antibodies against the PDGFR which induce type I collagen gene expression in normal human fibroblasts through the Ha Ras-ERK1/2- ROS pathway (Svegliati et al: Submitted). These findings suggest that anti PDGFR auto-antibodies play a pivotal role in the pathogenesis of scleroderma. Clinical chronic graft-versus-host disease (cGVHD) can show manifestations that are very similar to those of SSc. Although it is conceivable that the two diseases can share a similar pathophysiological mechanism there are no data supporting this assumption. In view of these considerations we tested the hypothesis that patients with cGVHD have serum auto-antibodies that stimulate PDGFR and activate collagen gene expression in fibroblasts. Methods Serum from 7 patients with extensive cGVHD showing scleroderma-like features either in the skin or in the lung was analyzed for the presence of stimulatory autoantibodies to PDGFR. Patients receiving allogeneic transplantation, but without any signs of cGVHD were used as controls. The median F-U after transplant was 23 months (range 16–36) in patients with cGVH and 42 (range 9–51) in the control group. The assay was carried by incubating purified IgG of the patients with mouse embryo fibroblasts carrying inactive copies of PDGFR α or β chains (PDGFR −/−) or the same cells expressing PDGFR α or β, respectively. Production of reactive oxygen species was assayed in the presence or absence of specific PDGFR inhibitors. The antibodies were characterized by immunoprecipitation, immunoblotting and absorption experiments in primary human fibroblasts and endothelial cells. Result Stimulatory antibodies to the PDGFR were selectively found in all patients with cGVHD and fibrotic lesions. The antibodies specifically recognized PDGFR, induced tyrosine phosphorylation and ROS accumulation. Their activity was completely and selectively abolished by pre-incubation with cells expressing PDGFR α or β chains or by PDGF receptor tyrosine kinase inhibitor. Anti-PDGFR antibodies induced selectively Ha-Ras-ERK1/2 and ROS cascade and stimulated the expression of type I collagen gene and myofibroblast phenotype conversion in normal human primary fibroblasts. Antibodies were absent in all controls. Conclusions Stimulatory auto-antibodies against PDGFR represent a specific hallmark of patients with cGVHD. Their biological activity on fibroblasts strongly argues for a causal role in the pathogenesis of the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Lin ◽  
Xiujuan He ◽  
Xinran Xie ◽  
Qingwu Liu ◽  
Jia Chen ◽  
...  

Chronic nonhealing cutaneous wounds are a thorny problem in the field of surgery because of their prolonged and unhealed characteristics. Huiyang Shengji extract (HSE) is an extract of traditional Chinese medicine prescription for treating chronic wounds. This study aims to investigate the regulation of M1 macrophages on fibroblast proliferation and secretion and the intervention mechanism of Huiyang Shengji extract. We found that the effects of HSFs stimulated with paracrine factors from M1 macrophages were as follows: the proliferation of HSFs was reduced, the expression of MKI-67 was downregulated, and the content and gene expression of the inflammation factors and fibroblast MMPs were increased, while the content and gene expression of TIMP-1 are decreased, the content of human fibroblasts secreting type I collagen (COL1A1) and type III collagen (COL3A1) was decreased, and the TGF-β1/Smad3 signaling pathway was inhibited. Interestingly, HSE inhibited these effects of M1 macrophages on human fibroblasts after the intervention, and the inhibitory effect was related to the concentration. In conclusion, M1 macrophages caused changes in HSFs and secretion, while HSE has a specific regulatory effect on the proliferation and secretion of fibroblasts caused by M1 macrophages.


Sign in / Sign up

Export Citation Format

Share Document