scholarly journals microRNA-217 suppressed epithelial-to-mesenchymal transition through targeting PTPN14 in gastric cancer

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Gen Chen ◽  
Zhangshuo Yang ◽  
Maohui Feng ◽  
Zhiliang Wang

Abstract Background: Gastric cancer (GC) is the one of most common malignancies and its mechanism of metastasis remains unclear. The study was designed to investigate the effects of microRNA-217 on epithelial-to-mesenchymal transition. Methods: The expression levels of miR-217 in GC were assayed by real-time qPCR. Metastasis and invasion of cancer cell were assayed by transwell chamber. Double luciferase reporter gene was used to verify the target regulatory relationship between microRNA-217 and tyrosine–protein phosphatase non-receptor type 14 (PTPN14) on gastric cell lines. Epithelial-to-mesenchymal transition (EMT) markers were assayed by Western blot. Results: We found that miR-217 had a low level expression in gastric tumor tissues of 40 patients with GC, and a lower expression in the gastric tumor tissues of the patients with GC metastasis. Moreover, miR-217 markedly suppressed the metastasis and invasion of gastric cancer cell line in vitro. Furthermore, miR-217 inhibited the expression of PTPN14 by directly targeting its 3′UTR. Moreover, the down-regulation of PTPN14 reduced the metastasis and invasion, whereas up-regulation of PTPN14 led to the enhanced metastases and invasion of gastric cells. miR-217 induced the down-regulation of PTPN14 and inhibited the EMT in gastric cancer cells. Conclusion: miR-217 inhibited the EMT through directly targeting to the 3′UTR of PTPN14.

2019 ◽  
Vol 20 (9) ◽  
pp. 719-726 ◽  
Author(s):  
Nan Li ◽  
Suyun Zhang ◽  
Qiong Luo ◽  
Fang Yuan ◽  
Rui Feng ◽  
...  

Objective: This study aimed to observe the effects of dihydroartemisinin (DHA) on the proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) of the human gastric cancer cell line SGC7901 cultured in vitro. Methods: We applied varying concentrations of DHA to SGC7901 cells. Cell proliferation was measured using the cell counting kit-8 (CCK-8). Flow cytometry, Transwell invasion assay, and cell scratch assay were used to investigate the cells’ apoptosis, invasion, and migration. Western blot was used to assess the expression levels of EMT markers E-cadhein and Vimentin, protein kinases Akt and phosphorylated AKT (p-AKT), and the cell transcription factor Snail. Results: DHA can effectively inhibit the malignant proliferation of gastric cancer cells in a time- and dose-dependent manner. In this study, with longer incubation times and increased drug concentrations, the antiproliferation effect of DHA on SGC7901 cells increased gradually (P<0.05). In addition, with the increase of drug concentration, the expression levels of E-cadhein, an epithelial-mesenchymal transition marker, remarkably increased, whereas the protein expression levels of the mesenchymal markers Vimentin, Akt, p-Akt, and Snail significantly decreased (P<0.05). Conclusion: DHA can effectively inhibit the proliferation, invasion, and metastasis of the gastric cancer cell line SGC7901 and induce cancer cell apoptosis. DHA can also downregulate PI3K/AKT and Snail activities and inhibit the epithelial-mesenchymal transition of gastric cancer cells. The potential anticancer effects of DHA deserve further investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuemei Pan ◽  
Ting Zhao ◽  
Saisai Mu ◽  
Shouchuan Li

Background. Gastric cancer, a kind of gastrointestinal malignancy, is the second type of leading death cancer. miR-193a is a key tumor suppressor in several diseases. PSEN1 is mainly related to Alzheimer’s disease and may be involved in the cleavage of the Notch receptor. Material and Methods. RT-PCR and western blot were applied to evaluate miR-193a and the expression level of PSEN1. Luciferase reporter assay was applied to verify whether PSEN1 was a target of miR-193a. The Kaplan–Meier method was employed to calculate the 5-year overall survival of gastric cancer patients. Results. miR-193a was downregulated in gastric cancer tissues and cell lines, and downregulation of miR-193a predicted poor 5-year overall survival of gastric cancer. miR-193a inhibited the proliferation and the activation of the PI3K/AKT signaling pathway in gastric cancer cells. miR-193a inhibited gastric cancer tumor growth in vivo. miR-193a impaired cell invasion and epithelial-to-mesenchymal transition (EMT) in HGC-27 cells. In addition, PSEN1 was a direct target of miR-193a and PSEN1 reversed partial functions of miR-193a in cell proliferation and invasion. Conclusion. miR-193a prominently decreased the proliferation, invasion, and activation of the PI3K/Akt signaling pathway and the abilities of epithelial-to-mesenchymal transition in gastric cancer cells. The newly identified miR-193a/PSEN1 axis provides novel insight into the pathogenesis of gastric cancer.


2020 ◽  
Author(s):  
Hanshu Ji ◽  
Xiaoyu Zhang

Abstract Purpose: lncRNA NEAT1 has been reported as a tumor-promoting gene in a variety of tumors, but few studies have explored its role and mechanism in gastric cancer. In the face of increasing incidence of gastric cancer, how to improve the diagnostic accuracy and therapeutic effect of gastric cancer is a major clinical problem. Therefore, we studied the effect and mechanism of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition of gastric cancer cells. To inquiry into the effect of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating miR-129-5p/PBX3 axis. Methods: Totally 63 GC diagnosed and treated in our hospital were selected as the study subjects, whose paired GC tissues and pericarcinomatous tissues were collected as the study specimens after obtaining their consent. QRT-PCR was employed to detect the NEAT1 expression in tissues and cells to analyze the relationship between NEAT1 and clinicopathological data of GC patients. In addition, stable and transient overexpression and inhibition vectors were established and transfected into GC cells HCG-27 and MKN-45. CCK-8, traswell, and flow cytometry were employed to evaluate the proliferation, invasion, and apoptosis of transfected cells. The correlation of miR-129-5p between PBX3 and NEAT1 was assessed using dual luciferase reporter assay, while that between NEAT1 and miR-129-5p was assessed by RNA-binding protein immunoprecipitation (RIP) . Western blot was applied for the detection of apoptosis and EMT related proteins.Results: NEAT1 was overexpressed in GC patients and had a high diagnostic value. The expression of NEAT1 was related to the pathological stage, differentiation degree, tumor size and lymph node metastasis of patients with GC. Down-regulated NEAT1 brought decreased cell proliferation, invasion and EMT, and increased apoptosis. According to dual luciferase reporter assay, NEAT1 could target miR-129-5p, while in turn miR-129-5p could target PBX3. Functional analysis exhibited that miR-129-5p overexpression inhibited PBX3 in GC cells, affecting cell proliferation, invasion, EMT and apoptosis, and rescue experiments demonstrated that these effects were eliminated by up-regulating NEAT1 expression.Conclusion: Inhibition of NEAT1 could mediate miR-129-5p/PBX3 axis to promote apoptosis of GC cells, and reduce cell proliferation, invasion and EMT.


2019 ◽  
Vol 9 (12) ◽  
pp. 1699-1705
Author(s):  
Yuming Luo ◽  
Wei Cao

The present study aimed to investigate the effect of miR-3613 on the biological functions of gastric cancer cell lines. The expression of miR-3613 and SOCS4 in gastric cancer cells were detected by RT-qPCR and western blot. The target genes of miR-3613 were verified with the luciferase reporter system and western blot. The SOCS4 overexpression plasmid was constructed and transfected into gastric cancer cells. To further investigate the function of miR-3613, shRNA targeting miR-3613 and SOCS4 overexpression were transfected into SGC-7901. The growth of cells was detected by CCK-8, then the cell invasion and migration ability were detected by wound healing and transwell. Furthermore, the level of cell cycle was detected by flow cytometry. The expression of cell proliferation, cyclin and migration-related proteins were detected by western blot. The results revealed that the expression of miR-3613 is significantly increased in gastric cancer cells. SOCS4 is one of the target genes of miR-3613. Additionally, interference with miR-3613 promotes cell cycle arrest in gastric cancer cells and reversed the inhibitory effect of miR-3613 on biological function of gastric cells. Collectively, the data demonstrated that miR-3613 regulates gastric cancer cell by targeting SOCS4, which is expected to be an attractive target for the development of new drugs for the treatment of gastric cancer.


2017 ◽  
Vol 82 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Jing Feng ◽  
Xiaojuan Wang ◽  
Weihua Zhu ◽  
Si Chen ◽  
Changwei Feng

Sign in / Sign up

Export Citation Format

Share Document