From biominerals to biomaterials: the role of biomolecule–mineral interactions

2009 ◽  
Vol 37 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Carole C. Perry ◽  
Siddharth V. Patwardhan ◽  
Olivier Deschaume

Interactions between inorganic materials and biomolecules at the molecular level, although complex, are commonplace. Examples include biominerals, which are, in most cases, facilitated by and in contact with biomolecules; implantable biomaterials; and food and drug handling. The effectiveness of these functional materials is dependent on the interfacial properties, i.e. the extent of molecular level ‘association’ with biomolecules. The present article gives information on biomolecule–inorganic material interactions and illustrates our current understanding using selected examples. The examples include (i) mechanism of biointegration: the role of surface chemistry and protein adsorption, (ii) towards improved aluminium-containing materials, and (iii) understanding the bioinorganic interface: experiment and modelling. A wide range of experimental techniques (microscopic, spectroscopic, particle sizing, thermal methods and solution methods) are used by the research group to study interactions between (bio)molecules and molecular and colloidal species that are coupled with computational simulation studies to gain as much information as possible on the molecular-scale interactions. Our goal is to uncover the mechanisms underpinning any interactions and to identify ‘rules’ or ‘guiding principles’ that could be used to explain and hence predict behaviour for a wide range of (bio)molecule–mineral systems.

1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1364
Author(s):  
M. Carmen Herrera-Beurnio ◽  
Jesús Hidalgo-Carrillo ◽  
Francisco J. López-Tenllado ◽  
Juan Martin-Gómez ◽  
Rafael C. Estévez ◽  
...  

In the last few years, researchers have focused their attention on the synthesis of new catalyst structures based on or inspired by nature. Biotemplating involves the transfer of biological structures to inorganic materials through artificial mineralization processes. This approach offers the main advantage of allowing morphological control of the product, as a template with the desired morphology can be pre-determined, as long as it is found in nature. This way, natural evolution through millions of years can provide us with new synthetic pathways to develop some novel functional materials with advantageous properties, such as sophistication, miniaturization, hybridization, hierarchical organization, resistance, and adaptability to the required need. The field of application of these materials is very wide, covering nanomedicine, energy capture and storage, sensors, biocompatible materials, adsorbents, and catalysis. In the latter case, bio-inspired materials can be applied as catalysts requiring different types of active sites (i.e., redox, acidic, basic sites, or a combination of them) to a wide range of processes, including conventional thermal catalysis, photocatalysis, or electrocatalysis, among others. This review aims to cover current experimental studies in the field of biotemplating materials synthesis and their characterization, focusing on their application in heterogeneous catalysis.


2015 ◽  
Vol 10 (03) ◽  
pp. 135-156 ◽  
Author(s):  
Valeriya M. Trusova

Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.


2000 ◽  
Vol 20 (6) ◽  
pp. 465-482 ◽  
Author(s):  
Paavo K. J. Kinnunen ◽  
Juha M. Holopainen

Main emphasis in studies on the mechanisms of fusion of cellular membranes has been in the roles of various proteins, with far less interest in the properties of lipids. Yet, on a molecular level fusion involves the merging of lipid bilayers. Studies so far have revealed lipids forming inverted non-lamellar phases to be important in controlling membrane fusion. However, the underlying molecular level mechanisms have remained controversial. While this review is focused on presenting one possible mechanism, involving so-called extended lipid conformation, we are also advocating the view, that in order to obtain a more complete understanding of this process it is necessary to merge the relevant physicochemical properties of lipids with the models describing the specific functions of proteins. To this end, taking into account the central importance of fusion in a wide range of cellular processes, we may anticipate its control to open novel possibilities also for therapeutic intervention.


Author(s):  
H. Du ◽  
S. H. Ng ◽  
K. T. Neo ◽  
M. Ng ◽  
I. S. Altman ◽  
...  

The combination of organic and inorganic materials forms unique composites with properties that neither of the two components provides. Such functional materials are considered innovative advanced materials that enable applications in many fields, including optics, electronics, separation membranes, protective coatings, catalysis, sensors, biotechnology, and others. The challenge of incorporating inorganic particles into an organic matrix still remains today, especially for nanoparticles, due to the difficulties in their dispersion, de-agglomeration and surface modification. NanoGram has pioneered a nanomaterials synthesis technology based on laser pyrolysis process to produce a wide range of crystalline nanomaterials including complex metal oxides, nitrides and sulfides and with precisely controlled compositions, crystal structure, particle size and size distributions. In this paper we will present some examples of nanocomposites prepared using different polymer host materials and phase-pure rutile TiO2. The inorganic component can be dispersed at higher 50 weight percent into the polymer matrix. We have demonstrated a 0.2–0.3 increase of refractive index in the composite over that of host polymer while maintaining high optical transparency. These nanocomposites can be used in a range of applications or optical devices, such as planar waveguides, flat panel displays, optical sensors, high-brightness LEDs, diffraction gratings and optical data storage. Experimental data on TiO2 nanoparticle characterization, dispersion technique, surface modification and will be presented and nanocomposite properties discussed.


Author(s):  
Philippe Pradère ◽  
Edwin L. Thomas

High Resolution Electron Microscopy (HREM) is a very powerful technique for the study of crystal defects at the molecular level. Unfortunately polymer crystals are beam sensitive and are destroyed almost instantly under the typical HREM imaging conditions used for inorganic materials. Recent developments of low dose imaging at low magnification have nevertheless permitted the attainment of lattice images of very radiation sensitive polymers such as poly-4-methylpentene-1 and enabled molecular level studies of crystal defects in somewhat more resistant ones such as polyparaxylylene (PPX) [2].With low dose conditions the images obtained are very noisy. Noise arises from the support film, photographic emulsion granularity and in particular, the statistical distribution of electrons at the typical doses of only few electrons per unit resolution area. Figure 1 shows the shapes of electron distribution, according to the Poisson formula :


2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


2018 ◽  
Vol 7 (2) ◽  
pp. 117-128 ◽  
Author(s):  
Erin Sullivan ◽  
Marie Louise Herzfeld-Schild

This introduction surveys the rise of the history of emotions as a field and the role of the arts in such developments. Reflecting on the foundational role of the arts in the early emotion-oriented histories of Johan Huizinga and Jacob Burkhardt, as well as the concerns about methodological impressionism that have sometimes arisen in response to such studies, the introduction considers how intensive engagements with the arts can open up new insights into past emotions while still being historically and theoretically rigorous. Drawing on a wide range of emotionally charged art works from different times and places—including the novels of Carson McCullers and Harriet Beecher-Stowe, the private poetry of neo-Confucian Chinese civil servants, the photojournalism of twentieth-century war correspondents, and music from Igor Stravinsky to the Beatles—the introduction proposes five ways in which art in all its forms contributes to emotional life and consequently to emotional histories: first, by incubating deep emotional experiences that contribute to formations of identity; second, by acting as a place for the expression of private or deviant emotions; third, by functioning as a barometer of wider cultural and attitudinal change; fourth, by serving as an engine of momentous historical change; and fifth, by working as a tool for emotional connection across communities, both within specific time periods but also across them. The introduction finishes by outlining how the special issue's five articles and review section address each of these categories, while also illustrating new methodological possibilities for the field.


Author(s):  
C. Claire Thomson

The first book-length study in English of a national corpus of state-sponsored informational film, this book traces how Danish shorts on topics including social welfare, industry, art and architecture were commissioned, funded, produced and reviewed from the inter-war period to the 1960s. For three decades, state-sponsored short filmmaking educated Danish citizens, promoted Denmark to the world, and shaped the careers of renowned directors like Carl Th. Dreyer. Examining the life cycle of a representative selection of films, and discussing their preservation and mediation in the digital age, this book presents a detailed case study of how informational cinema is shaped by, and indeed shapes, its cultural, political and technological contexts.The book combines close textual analysis of a broad range of films with detailed accounts of their commissioning, production, distribution and reception in Denmark and abroad, drawing on Actor-Network Theory to emphasise the role of a wide range of entities in these processes. It considers a broad range of genres and sub-genres, including industrial process films, public information films, art films, the city symphony, the essay film, and many more. It also maps international networks of informational and documentary films in the post-war period, and explores the role of informational film in Danish cultural and political history.


2020 ◽  
pp. 102-109
Author(s):  
Svetlana Alekseevna Raschetina ◽  

Relevance and problem statement. Modern unstable society is characterized by narrowing the boundaries of controlled socialization and expanding the boundaries of spontaneous socialization of a teenager based on his immersion in the question arises about the importance of the family in the process of socialization of a teenager in the conditions of expanding the space of socialization. There is a need to study the role of the family in this process, to search, develop and test research methods that allow us to reveal the phenomenon of socialization from the side of its value characteristics. The purpose and methodology of the study: to identify the possibilities of a systematic and anthropological methodology for studying the role of the family in the process of socialization of adolescents in modern conditions, testing research methods: photo research on the topic “Ego – I” (author of the German sociologist H. Abels), profile update reflexive processes (by S. A. Raschetina). Materials and results of the study. The study showed that for all the problems that exist in the family of the perestroika era and in the modern family, it acts for a teenager as a value and the first (main) support in the processes of socialization. The positions well known in psychology about the importance of interpersonal relations in adolescence for the formation of attitudes towards oneself as the basis of socialization are confirmed. Today, the frontiers of making friends have expanded enormously on the basis of Internet communication. The types of activities of interest to a teenager (traditional and new ones related to digitalization) are the third pillar of socialization. Conclusion. The “Ego – I” method of photo research has a wide range of possibilities for quantitative and qualitative analysis of the socialization process to identify the value Pillars of this process.


Sign in / Sign up

Export Citation Format

Share Document