Serological Response to Helicobacter Pylori in Gastric and Non—Gastric Cancer

1996 ◽  
Vol 91 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Marcello Menegatti ◽  
Dino Vaira ◽  
John Holton ◽  
Fernanda Miranda ◽  
Chiara Ricci ◽  
...  

1. We aimed to evaluate the seroprevalence of Helicobacter pylori (H. pylori) in gastric cancer, non-gastric cancer and outpatients by ELISA and isoelectric focusing, and to compare histology and serology for H. pylori in gastric cancer and outpatients. 2. In 124 patients with gastric cancer, 78 patients with non-gastric cancer and 110 outpatients, H. pylori seroprevalence was assessed by ELISA and isoelectric focusing. Gastric cancer and outpatients underwent endoscopy with biopsies. 3. Seroprevalence by ELISA was significantly higher in gastric cancer compared with non-gastric cancer (84% versus 56%, P < 0.001) but not with outpatients (84% versus 74%). Iso-electric focusing detection of H. pylori was comparable to ELISA: 85, 51 and 75% in gastric cancer, non-gastric cancer and outpatients respectively. Oligoclonal iso-electric focusing was significantly more frequent in gastric cancer compared with non-gastric cancer and outpatients: 69% versus 45 and 46% respectively, P < 0.01. The reliability of H. pylori detection by antral biopsy was significantly lower in gastric cancer compared with outpatients: 36% versus 74% (P < 0.001). In gastric cancer, ELISA and iso-electric focusing were significantly more reliable than histology in H. pylori detection (84 and 85% versus 36% respectively) (P < 0.001). 4. Serological immune response to H. pylori in gastric cancer, non-gastric cancer and outpatients seems different both quantitatively and qualitatively; serology was more reliable than histology in detection of H. pylori in gastric cancer.

Author(s):  
Manouchehr Ahmadi Hedayati ◽  
Saeed Salavati

Introduction. Numerous molecular epidemiology studies have been performed about the frequency of Helicobacter pylori virulence genes in patients with H. pylori infection so far. This study was conducted to detect transcriptional profile by cDNA of H. pylori virulence genes in gastric biopsy samples of gastritis and gastric carcinoma patients. Materials and Methods. In a case-control study, based on the prevalence of gastritis and gastric cancer in Sanandaj city during 2018 and 2019, 23 and 11 gastric antral biopsy samples with H. pylori infection were collected from gastritis and gastric carcinoma patients by the consecutive and available sampling method. Pathological characters, including tumor grades and tumor areas for gastric carcinoma biopsy samples prepared from gastric cancer areas, were determined by the pathologist. Total RNA of gastric antral biopsy samples was extracted, and their cDNA was synthesized by TaKaRa kit. H. pylori virulence genes’ cDNA using specific primers and PCR was detected. This study’s results were analyzed by SPSS version 25 and statics chi-square tests for determination of relationship and correlation between cDNAs of H. pylori transcriptional profile and clinical outcomes of H. pylori infection, including gastritis, gastric carcinoma, tumor grades, and tumor area. Results. The positive statistical correlations were observed between transcripts of cagA, cagA-EPIYAC, cagE, and cagY genes and H. pylori infection clinical outcomes ( P < 0.05 ). Conclusion. Detection of the H. pylori virulence genes’ cDNA in gastric biopsy samples can help provide the prognosis of clinical outcomes.


2010 ◽  
Vol 23 (4) ◽  
pp. 713-739 ◽  
Author(s):  
Lydia E. Wroblewski ◽  
Richard M. Peek ◽  
Keith T. Wilson

SUMMARY Helicobacter pylori is a gastric pathogen that colonizes approximately 50% of the world's population. Infection with H. pylori causes chronic inflammation and significantly increases the risk of developing duodenal and gastric ulcer disease and gastric cancer. Infection with H. pylori is the strongest known risk factor for gastric cancer, which is the second leading cause of cancer-related deaths worldwide. Once H. pylori colonizes the gastric environment, it persists for the lifetime of the host, suggesting that the host immune response is ineffective in clearing this bacterium. In this review, we discuss the host immune response and examine other host factors that increase the pathogenic potential of this bacterium, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors. In addition to host effects and responses, H. pylori strains are genetically diverse. We discuss the main virulence determinants in H. pylori strains and the correlation between these and the diverse clinical outcomes following H. pylori infection. Since H. pylori inhibits the gastric epithelium of half of the world, it is crucial that we continue to gain understanding of host and microbial factors that increase the risk of developing more severe clinical outcomes.


2018 ◽  
Vol 55 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Ruth Maria Dias Ferreira VINAGRE ◽  
Igor Dias Ferreira VINAGRE ◽  
Adenielson VILAR-e-SILVA ◽  
Amanda Alves FECURY ◽  
Luisa Caricio MARTINS

ABSTRACT BACKGROUND: The association between infection with Helicobacter pylori and different gastroduodenal diseases is related to bacterial, host and environmental factors. Studies have demonstrated an association between the genetic diversity of H. pylori, especially in the vacA and cagA genes, and the development of digestive diseases such as peptic ulcer and gastric cancer. In addition, the nature of the host inflammatory response may explain these different manifestations of infection caused by this microorganism. In this respect, host factors that regulate the immune and inflammatory responses involving the functional interaction of H. pylori infection with different components of the immune system, particularly T cells, in gastroduodenal diseases still need further investigation. OBJECTIVE: To characterize the immune response, including immunity induced by infection with H. pylori, especially virulent strains (vacA alleles and cagA gene), by analyzing the cytokine profile and T-cell population present in gastroduodenal diseases in a Brazilian population. METHODS: In a prospective study, gastric biopsies were collected from 554 patients with different gastroduodenal diseases for histological analysis and for the determination of bacterial genotype and cytokine production (IL-4, IL-10, IFN-γ and IL-12) by ELISA. RESULTS: The predominant genotype of the H. pylori strains isolated from the patients studied was s1m1cagA+, which was more common among patients with gastric ulcer, duodenal ulcer and gastric cancer. A significant association was observed between the s1m1cagA+ genotype and a higher degree of inflammation, higher neutrophil activity and the development of intestinal metaplasia. The gastric concentrations of IFN-γ and IL-12 were significantly higher in patients infected with H. pylori than in uninfected individuals. Higher levels of these cytokines were detected in patients with gastric ulcer and cancer, while the levels of IL-4 and IL-10 in the gastric mucosa were lower in these patients. In addition, IFN-γ and IL-12 concentrations in gastric biopsies were higher in patients infected with the virulent s1m1cagA+ genotype. In contrast, IL-4 and IL-10 levels were higher in tissue infected with s2m2cagA in gastric biopsies. CONCLUSION: Our study shows that the interaction between the type of infectious strain and the Th1 immune response can influence and perpetuate gastric inflammation, and thus contributes to the development of the different clinical manifestations of H. pylori infection.


Background and aim: Helicobacter pylori (H. pylori) is an incriminated pathogen causing diseases in both animals and humans and considered a zoonotic pathogen. H. pylori infection is considered a cause of gastric cancer, which rests a significant health care challenge. This study analyzes the expression pattern of matrix metalloprotein 2 (MMP-2) in patients with Helicobacter pylori-associated gastritis and the effect of H. pylori on gastric cancer stem cells, as well as study the role of helicon bacteriosis in dog in transmission of H. pylori infection to human. Materials and methods: Fifty-five of each sample (gastric biopsy, blood and stool) were collected from patients suffering from dyspepsia, chronic vomiting and perforated peptic ulcers and also from apparent healthy dogs. The investigation detected H. pylori by serological and histopathological examination. Biopsies were stored in physiological saline for identification of H. pylori by conventional time PCR. MMP-2 and Gastric cancer stem cells were then identified by immunohistochemistry. Results: Serological identification for H. pylori Antigen and Antibodies revealed (63% human, 50% dogs) and (87% human, 90% dogs) respectively were positive. Genotyping of H. pylori based on 16S rRNA gene showed 54.5% of human and 35% of dogs were positive. Immunohistochemistry revealed strong expression of CD44 in H. pylori- associated gastric cancer cases, MMP-2 expression was observed in all neoplastic lesions associated with H. pylori infection. Conclusion: H. pylori infection affects gastric mucosa and induces changes in gastric stem cells altering their differentiation and increased expression of MMP’s and CD44with a resultant potentiation of oncogenic alteration. In addition the up-regulation of both markers could be an instrumental to interpret the origination of gastric cancer.


2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Narges Dastmalchi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Mirsaed Miri Nargesi ◽  
Reza Safaralizadeh

ABSTRACT Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.


2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 181
Author(s):  
Masami Suganuma ◽  
Tatsuro Watanabe ◽  
Eisaburo Sueoka ◽  
In Kyoung Lim ◽  
Hirota Fujiki

The tumor necrosis factor-α (TNF-α)-inducing protein (tipα) gene family, comprising Helicobacter pylori membrane protein 1 (hp-mp1) and tipα, has been identified as a tumor promoter, contributing to H. pylori carcinogenicity. Tipα is a unique H. pylori protein with no similarity to other pathogenicity factors, CagA, VacA, and urease. American H. pylori strains cause human gastric cancer, whereas African strains cause gastritis. The presence of Tipα in American and Euro-Asian strains suggests its involvement in human gastric cancer development. Tipα secreted from H. pylori stimulates gastric cancer development by inducing TNF-α, an endogenous tumor promoter, through its interaction with nucleolin, a Tipα receptor. This review covers the following topics: tumor-promoting activity of the Tipα family members HP-MP1 and Tipα, the mechanism underlying this activity of Tipα via binding to the cell-surface receptor, nucleolin, the crystal structure of rdel-Tipα and N-terminal truncated rTipα, inhibition of Tipα-associated gastric carcinogenesis by tumor suppressor B-cell translocation gene 2 (BTG2/TIS21), and new strategies to prevent and treat gastric cancer. Thus, Tipα contributes to the carcinogenicity of H. pylori by a mechanism that differs from those of CagA and VacA.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhijing Xue ◽  
Yuanhai You ◽  
Lihua He ◽  
Yanan Gong ◽  
Lu Sun ◽  
...  

Abstract Background The cytotoxin-associated gene A (cagA) is one of the most important virulence factors of Helicobacter pylori (H. pylori). There is a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal of CagA protein. This repeat region is thought to play an important role in the pathogenesis of gastrointestinal diseases. The aim of this study was to investigate the diversity of cagA 3′ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region of H. pylori, and their association with gastroduodenal diseases. Methods A total of 515 H. pylori strains from patients in 14 different geographical regions of China were collected. The genomic DNA from each strain was extracted and the cagA 3′ variable region was amplified by polymerase chain reaction (PCR). The PCR products were sequenced and analyzed using MEGA 7.0 software. Results A total of 503 (97.7%) H. pylori strains were cagA-positive and 1,587 EPIYA motifs were identified, including 12 types of EPIYA or EPIYA-like sequences. In addition to the four reported major segments, several rare segments (e.g., B′, B″ and D′) were defined and 20 different sequence types (e.g., ABD, ABC) were found in our study. A total of 481 (95.6%) strains carried the East Asian type CagA, and the ABD subtypes were most prevalent (82.1%). Only 22 strains carried the Western type CagA, which included AC, ABC, ABCC and ABCCCC subtypes. The CagA-ABD subtype had statistical difference in different geographical regions (P = 0.006). There were seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs, among which amino acids 893 and 894 had a statistical difference with gastric cancer (P = 0.004). Conclusions In this study, 503 CagA sequences were studied and analyzed in depth. In Chinese population, most H. pylori strains were of the CagA-ABD subtype and its presence was associated with gastroduodenal diseases. Amino acid polymorphisms at residues 893 and 894 flanking the EPIYA motifs had a statistically significant association with gastric cancer.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jacek Baj ◽  
Alicja Forma ◽  
Monika Sitarz ◽  
Piero Portincasa ◽  
Gabriella Garruti ◽  
...  

Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.


2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


Sign in / Sign up

Export Citation Format

Share Document