scholarly journals Significance of the TGF-β1/IL-6 axis in oral cancer

2012 ◽  
Vol 122 (10) ◽  
pp. 459-472 ◽  
Author(s):  
Miao-Fen Chen ◽  
Wen-Hung Wang ◽  
Paul-Yang Lin ◽  
Kuan-Der Lee ◽  
Wen-Cheng Chen

The aim of the present study was to explore specific molecular markers that could lead to new insights into the identification of innovative treatments in oral cancer. The role of TGF-β1 (transforming growth factor-β1) and its predictive power in the prognosis of oral cancer has been identified. Human oral cancer cell lines, including SCC4 and SCC25, were selected for cellular experiments. Changes in tumour aggressiveness, responses to treatment and the signalling pathway responsible were investigated in vitro. Furthermore, 125 oral cancer tissue specimens were constructed into tissue microarray blocks for immunohistochemical analysis to correlate the expression of TGF-β1 with clinical outcome. Using in vitro experiments, our results revealed that activated TGF-β1 signalling resulted in more aggressive tumour growth, augmented the epithelial–mesenchymal transition and more resistance to treatment. Activated IL-6 (interleukin-6) signalling could be the mechanism underlying the effects of TGF-β1 on oral cancer. Regarding clinical data, the incidence of TGF-β1 immunoreactivity in oral cancer specimens was significantly higher than in non-malignant epithelium and positively linked to IL-6 staining. Furthermore, expression of TGF-β1 was significantly correlated with the risk of lymph node involvement, disease recurrence and shorter survival in patients with pathological stage III–IV oral cancer. In conclusion, the TGF-β1/IL-6 axis had predictive power in the prognosis of oral cancer, and targeting TGF-β1 could represent a promising treatment strategy.

2020 ◽  
Vol 319 (6) ◽  
pp. F1125-F1134
Author(s):  
Bo Zhang ◽  
Chengguang Zhao ◽  
Ling Hou ◽  
Yubin Wu

Renal interstitial fibrosis (RIF) is characterized by excessive extracellular matrix deposition and involves epithelial-mesenchymal transition (EMT). The lncRNA taurine-upregulated gene 1 ( TUG1) participates in EMT in several cancers; however, the effect and underlying mechanism of TUG1 in RIF-related EMT remain unclear. Here, we explored the mechanisms by which TUG1 modulates RIF. An in vivo model of renal fibrosis was established by unilateral ureteral obstruction in Balb/c mice. Human renal proximal tubular epithelial (HK-2) cells treated with transforming growth factor (TGF)-β1 were used to induce the in vitro model. Morphological changes and TUG1 expression were assessed. HK-2 cells were transfected with siRNA to silence TUG1. Western blot analysis, immunofluorescence staining, cell proliferation, and migration assays were performed to examine TGF-β1-induced changes in EMT markers and EMT-like cell behaviors. TUG1 and β-catenin ( CTNNB1) levels were significantly upregulated, whereas miR-141-3p was significantly downregulated, during EMT in vitro and in vivo. TUG1 knockdown or miR-141-3p overexpression supported the epithelioid morphology of HK-2 cells while enhancing the downregulation of E-cadherin and upregulation of vimentin, α-smooth muscle actin, and β-catenin levels in TGF-β1-treated HK-2 cells. TUG1 knockdown promoted the proliferation and decreased the migration of HK-2 cells and enhanced the downregulation of miR-141-3p levels in TGF-β1-treated HK-2 cells. TUG1 directly targeted miR-141-3p, and miR-141-3p was directly bound to CTNNB1. Downregulation of miR-141-3p inhibited TUG1 silencing-induced suppression of EMT. In conclusion, TUG1 promotes EMT in TGF-β1-induced HK-2 cells via upregulation of β-catenin levels by sponging miR-141-3p, suggesting a novel therapeutic candidate for RIF.


2021 ◽  
Vol 9 (1) ◽  
pp. e002038
Author(s):  
Yang Li ◽  
Meng Xue ◽  
Fang Hu ◽  
Yijie Jia ◽  
Zongji Zheng ◽  
...  

IntroductionAs a key event leading to tubulointerstitial fibrosis in diabetic kidney disease (DKD), epithelial–mesenchymal transition (EMT) has drawn increasing attention from researchers. The antiaging protein Klotho attenuates renal fibrosis in part by inhibiting ERK1/2 signaling in DKD. Early growth response factor 1 (Egr-1), which is activated mainly by ERK1/2, has been shown to play an important role in EMT. However, whether Klotho prevents EMT by inhibiting ERK1/2-dependent Egr-1 expression in DKD is unclear.The aim of this study was to investigate whether Klotho prevents EMT through Egr-1 downregulation by inhibiting the ERK1/2 signaling pathway in DKD.Research design and methodsMale C57BL/6J mice fed an high-fat diet for 4 weeks received 120 mg/kg streptozotocin (STZ), which was injected intraperitoneally. Klotho and Egr-1 expression was detected in the renal cortices of these mice on their sacrifice at 6 and 12 weeks after STZ treatment. In In vitro studies, we incubated HK2 cells under high-glucose (HG) or transforming growth factor-β1 (TGF-β1) conditions to mimic DKD. We then transfected the cells with an Klotho-containing plasmid, Klotho small interfering RNA.ResultsKlotho expression was significantly decreased in the renal cortices of mice with diabetes mellitus (DM) compared with the renal cortices of control mice at 6 weeks after treatment and even more significantly decreased at 12 weeks. In contrast, Egr-1 expression was significantly increased in mice with DM compared with control mice only at 12 weeks. We also found that Klotho overexpression downregulated Egr-1 expression and the (p-ERK1/2):(ERK1/2) ratio in HG-treated or TGF-β1-treated HK2 cells. Conversely, Klotho silencing upregulated Egr-1 expression and the (p-ERK1/2):(ERK1/2) ratio in HG-treated or TGF-β1-treated HK2 cells. Moreover, the effects of si-Klotho were abolished by the ERK1/2 inhibitor PD98059.ConclusionsKlotho prevents EMT during DKD progression, an effect that has been partially attributed to Egr-1 downregulation mediated by ERK1/2 signaling pathway inhibition.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 143
Author(s):  
Ji-Hoon Jeong ◽  
Hyunhee Kim ◽  
Seung-Ho Park ◽  
Hayeon Park ◽  
Minseok Jeong ◽  
...  

Transforming growth factor-β1 (TGF-β1) is highly expressed in the tumor microenvironment and known to play a multifunctional role in cancer progression. In addition, TGF-β1 promotes metastasis by inducing epithelial–mesenchymal transition (EMT) in a variety of tumors. Thus, inhibition of TGF-β1 is considered an important strategy in the treatment of cancer. In most tumors, TGF-β1 signal transduction exhibits modified or non-functional characteristics, and TGF-β1 inhibitors have various inhibitory effects on cancer cells. Currently, many studies are being conducted to develop TGF-β1 inhibitors from non-toxic natural compounds. We aimed to develop a new TGF-β1 inhibitor to suppress EMT in cancer cells. As a result, improved chalcone-like chain CTI-82 was identified, and its effect was confirmed in vitro. We showed that CTI-82 blocked TGF-β1-induced EMT by inhibiting the cell migration and metastasis of A549 lung cancer cells. In addition, CTI-82 reduced the TGF-β1-induced phosphorylation of SMAD2/3 and inhibited the expression of various EMT markers. Our results suggest that CTI-82 inhibits tumor growth, migration, and metastasis.


2009 ◽  
Vol 297 (1) ◽  
pp. L115-L124 ◽  
Author(s):  
Najmunnisa Nasreen ◽  
Kamal A. Mohammed ◽  
Kamal K. Mubarak ◽  
Maher A. Baz ◽  
Olufemi A. Akindipe ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis noted in the pulmonary parenchyma. Pleural mesothelial cells (PMC) are metabolically dynamic cells that cover the lung and chest wall as a monolayer and are in intimate proximity to the underlying lung parenchyma. The precise role of PMC in the pathogenesis of pulmonary parenchymal fibrosis remains to be identified. Transforming growth factor (TGF)-β1, a cytokine known for its capacity to induce proliferative and transformative changes in lung cells, is found in significantly higher quantities in the lungs of patients with IPF. High levels of TGF-β1 in the subpleural milieu may play a key role in the transition of normal PMC to myofibroblasts. Here we demonstrate that PMC activated by TGF-β1 undergo epithelial-mesenchymal transition (EMT) and respond with haptotactic migration to a gradient of TGF-β1 and that the transition of PMC to myofibroblasts is dependent on smad-2 signaling. The EMT of PMC was marked by upregulation of α-smooth muscle actin (α-SMA), fibroblast specific protein-1 (FSP-1), and collagen type I expression. Cytokeratin-8 and E-cadherin expression decreased whereas vimentin remained unchanged over time in transforming PMC. Knockdown of smad-2 gene by silencing small interfering RNA significantly suppressed the transition of PMC to myofibroblasts and significantly inhibited the PMC haptotaxis. We conclude that PMC undergo EMT when exposed to TGF-β1, involving smad-2 signaling, and PMC may be a possible source of myofibroblasts in IPF.


2009 ◽  
Vol 297 (5) ◽  
pp. L805-L812 ◽  
Author(s):  
V. M. Felton ◽  
Z. Borok ◽  
B. C. Willis

The ability of transforming growth factor-β1 (TGF-β1) to induce epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AEC) in vitro and in vivo, together with the demonstration of EMT in biopsies of idiopathic pulmonary fibrosis (IPF) patients, suggests a role for TGF-β1-induced EMT in disease pathogenesis. We investigated the effects of N-acetylcysteine (NAC) on TGF-β1-induced EMT in a rat epithelial cell line (RLE-6TN) and in primary rat alveolar epithelial cells (AEC). RLE-6TN cells exposed to TGF-β1 for 5 days underwent EMT as evidenced by acquisition of a fibroblast-like morphology, downregulation of the epithelial-specific protein zonula occludens-1, and induction of the mesenchymal-specific proteins α-smooth muscle actin (α-SMA) and vimentin. These changes were inhibited by NAC, which also prevented Smad3 phosphorylation. Similarly, primary alveolar epithelial type II cells exposed to TGF-β1 also underwent EMT that was prevented by NAC. TGF-β1 decreased cellular GSH levels by 50–80%, whereas NAC restored them to ∼150% of those found in TGF-β1-treated cells. Treatment with glutathione monoethyl ester similarly prevented an increase in mesenchymal marker expression. Consistent with its role as an antioxidant and cellular redox stabilizer, NAC dramatically reduced intracellular reactive oxygen species production in the presence of TGF-β1. Finally, inhibition of intracellular ROS generation during TGF-β1 treatment prevented alveolar EMT, but treatment with H2O2 alone did not induce EMT. We conclude that NAC prevents EMT in AEC in vitro, at least in part through replenishment of intracellular GSH stores and limitation of TGF-β1-induced intracellular ROS generation. We speculate that beneficial effects of NAC on pulmonary function in IPF may be mediated by inhibitory effects on alveolar EMT.


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Min An ◽  
Dong Li ◽  
Ming Yuan ◽  
Qiuju Li ◽  
Lu Zhang ◽  
...  

Endometrial cells and microenvironment are two important factors in the pathogenesis of adenomyosis. Our previous study demonstrated that macrophages can induce eutopic epithelial cells of adenomyosis to suffer from epithelial–mesenchymal transition (EMT). The aim of this study is to detect whether macrophages interacting with epithelial cells equally induce the EMT process in normal and eutopic endometria of healthy and adenomyotic patients; and whether macrophages parallelly polarize to M2. We investigated the expression levels of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), cytokeratin7 (CK7), vimentin, transforming growth factor-β1 (TGFB1), SMAD3 and pSMAD3 using immunohistochemistry and western blot, and then estimated the genetic levels of CD163, IL10 and MMP12 using real-time quantitative polymerase chain reaction (RT-PCR) in macrophages. Eutopic and normal endometrial tissues were obtained from 20 patients with adenomyosis and 11 control patients without adenomyosis, respectively. The immunohistochemical analysis shows distinct EMT in eutopic endometria in secretory phase; the expression levels of TGFB1, SMAD3 and pSMAD3 that indicate signal pathway of EMT were also higher in secretory phase. Macrophages can induce EMT process in primary endometrial epithelial cells derived from normal and eutopic endometria. After co-culturing, THP-1-derived macrophages polarized to M2. Compared with the eutopic endometrium group, further polarization to M2 was observed in the normal endometrium group. These results indicate that adenomyosis may be promoted by the pathologic EMT of epithelial cells, which is induced by macrophages that incapably polarize to M2.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199651
Author(s):  
Jie Yang ◽  
Enzi Feng ◽  
Yanxin Ren ◽  
Shun Qiu ◽  
Liufang Zhao ◽  
...  

Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2883 ◽  
Author(s):  
Keiko Takagi ◽  
Yutaka Midorikawa ◽  
Tadatoshi Takayama ◽  
Hayato Abe ◽  
Kyoko Fujiwara ◽  
...  

Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.


Sign in / Sign up

Export Citation Format

Share Document