One ring to bind them – Cohesin’s interaction with chromatin fibers

2019 ◽  
Vol 63 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Macarena Moronta-Gines ◽  
Thomas R.H. van Staveren ◽  
Kerstin S. Wendt

Abstract In the nuclei of eukaryotic cells, the genetic information is organized at several levels. First, the DNA is wound around the histone proteins, to form a structure termed as chromatin fiber. This fiber is then arranged into chromatin loops that can cluster together and form higher order structures. This packaging of chromatin provides on one side compaction but also functional compartmentalization. The cohesin complex is a multifunctional ring-shaped multiprotein complex that organizes the chromatin fiber to establish functional domains important for transcriptional regulation, help with DNA damage repair, and ascertain stable inheritance of the genome during cell division. Our current model for cohesin function suggests that cohesin tethers chromatin strands by topologically entrapping them within its ring. To achieve this, cohesin’s association with chromatin needs to be very precisely regulated in timing and position on the chromatin strand. Here we will review the current insight in when and where cohesin associates with chromatin and which factors regulate this. Further, we will discuss the latest insights into where and how the cohesin ring opens to embrace chromatin and also the current knowledge about the ‘exit gates’ when cohesin is released from chromatin.


2020 ◽  
Vol 6 (3) ◽  
pp. 26 ◽  
Author(s):  
Elisa Taiana ◽  
Domenica Ronchetti ◽  
Katia Todoerti ◽  
Lucia Nobili ◽  
Pierfrancesco Tassone ◽  
...  

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) reported to be frequently deregulated in various types of cancers and neurodegenerative processes. NEAT1 is an indispensable structural component of paraspeckles (PSs), which are dynamic and membraneless nuclear bodies that affect different cellular functions, including stress response. Furthermore, increasing evidence supports the crucial role of NEAT1 and essential structural proteins of PSs (PSPs) in the regulation of the DNA damage repair (DDR) system. This review aims to provide an overview of the current knowledge on the involvement of NEAT1 and PSPs in DDR, which might strengthen the rationale underlying future NEAT1-based therapeutic options in tumor and neurodegenerative diseases.



Author(s):  
Jacob Edogbanya ◽  
Daniela Tejada‐Martinez ◽  
Nigel J. Jones ◽  
Amit Jaiswal ◽  
Sarah Bell ◽  
...  

AbstractThe C1ORF112 gene initially drew attention when it was found to be strongly co‐expressed with several genes previously associated with cancer and implicated in DNA repair and cell cycle regulation, such as RAD51 and the BRCA genes. The molecular functions of C1ORF112 remain poorly understood, yet several studies have uncovered clues as to its potential functions. Here, we review the current knowledge on C1ORF112 biology, its evolutionary history, possible functions, and its potential relevance to cancer. C1ORF112 is conserved throughout eukaryotes, from plants to humans, and is very highly conserved in primates. Protein models suggest that C1ORF112 is an alpha-helical protein. Interestingly, homozygous knockout mice are not viable, suggesting an essential role for C1ORF112 in mammalian development. Gene expression data show that, among human tissues, C1ORF112 is highly expressed in the testes and overexpressed in various cancers when compared to healthy tissues. C1ORF112 has also been shown to have altered levels of expression in some tumours with mutant TP53. Recent screens associate C1ORF112 with DNA replication and reveal possible links to DNA damage repair pathways, including the Fanconi anaemia pathway and homologous recombination. These insights provide important avenues for future research in our efforts to understand the functions and potential disease relevance of C1ORF112.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 940-940
Author(s):  
Zuzana Tothova ◽  
John M. Krill-Burger ◽  
Daniel S. Day ◽  
J. Erika Haydu ◽  
Brian J. Abraham ◽  
...  

Abstract Recurrent somatic mutations in core components and modulators of the cohesin ring - a multimeric protein complex that forms a ring structure around DNA and provides spatial genome organization - have been identified across multiple cancer types, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), where they are associated with poor overall survival. Cohesin proteins are involved in sister chromatid cohesion, chromatin organization into loops, transcriptional activation, and DNA damage repair. The mechanisms underlying clonal expansion of these driver mutations are unknown and no therapies have selective efficacy in cohesin-mutant cancers. We sought to determine the effects of mutations in the most frequently mutated cohesin subunit, STAG2, on cohesin complex composition using immunoprecipitation followed by quantitative mass spectrometry (IP-MS), genetic dependencies of STAG2-mutant cells by genome-wide CRISPR screening, and mutant cohesin association with chromatin using chromatin immunoprecipitation followed by sequencing (ChIP-Seq). Our goal was to understand how these mutations contribute to cellular transformation and to identify possible therapeutic targets. Applying IP-MS in AML cell lines engineered with different STAG2 mutations, we identified and validated a switch from STAG2- to its paralog STAG1-containing cohesin complexes. In addition, we observed changes in the interaction of the mutant cohesin complex with proteins involved in DNA repair and replication, including PARP1, and RNA-mediated interaction with RNA splicing machinery, including SF3B family members. We next hypothesized that these cohesin-dependent alterations could lead to shifts in genetic dependencies. Using genome-scale CRISPR-Cas9 screens, we identified preferential dependency of STAG2-mutant cells on STAG1, consistent with our proteomics studies. We also found a striking concordance between additional cellular processes highlighted by IP-MS experiments and observed increased dependency of STAG2-mutant cells on DNA damage repair and mRNA processing. Therefore, STAG2 mutations lead to changes in cohesin complex structure and alter interactions with proteins involved in DNA damage, replication, and RNA modification, which become genetic dependencies in this context. Prompted by this concordance, we evaluated DNA replication, DNA damage and splicing in cohesin-mutant cells. We observed a 4-fold increase in replication fork stalling in STAG2-mutant cells, which was associated with accumulation of double strand DNA breaks and activation of the ATR and ATM DNA damage checkpoints. STAG2-mutant cells demonstrated ~100-fold increased sensitivity to the PARP inhibitor talazoparib, which was consistent across models of other cohesin-mutant subunits. In addition, cohesin-mutant cells showed aberrant splicing and increased sensitivity to treatment with SF3B1 inhibitors E7107 and H3B-8800. In aggregate, genetic or pharmacologic perturbation of DNA damage repair or splicing created a synthetic vulnerability for cohesin-mutant cells in vitro and in vivo. Finally, we explored how STAG1-containing complexes alter cohesin-mediated genome compartmentalization in cohesin-mutant cells. Using ChIP-Seq, we observed that STAG2 loss leads to a global decrease in cohesin binding to chromatin, including at sites of insulated neighborhood boundaries, with subsequent gene expression changes. Loss of cohesin binding was associated with increased enhancer activity and super-enhancer expansion in STAG2-mutant cells. In addition, we identified changes in the co-localization of the mutant cohesin complex with super-enhancer enriched factors, DNA damage repair and splicing machinery. These findings are consistent with a model in which wild type and mutant cohesin complexes, defined by their unique composition and patterns of chromatin binding and architecture, have differential abilities to maintain chromatin organization as it relates to spatial organization of super-enhancers, coactivators and transcription factors, as well as DNA damage repair and splicing machinery. Perturbation of any of these components, which have been recently proposed to form phase-separated nuclear bodies, creates vulnerabilities that may be exploited therapeutically with existing drugs in patients with cohesin-mutated malignancies. Disclosures Abraham: Syros Pharmaceuticals: Equity Ownership. Seiler:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. D'Andrea:Intellia Therapeutics: Consultancy; Cedilla Therpeutics: Consultancy, Equity Ownership; EMD-Serono: Consultancy, Research Funding; Sierra: Consultancy, Research Funding; Ideaya: Consultancy, Equity Ownership; Lilly: Consultancy, Research Funding; Formation Biologics: Consultancy. Young:Omega Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Syros Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Camp4 Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.



Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2424
Author(s):  
Juliette Ferrand ◽  
Beatrice Rondinelli ◽  
Sophie E. Polo

Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.



2022 ◽  
Vol 23 (1) ◽  
pp. 523
Author(s):  
Sayaka Ueno ◽  
Tamotsu Sudo ◽  
Akira Hirasawa

Ataxia–telangiectasia mutated (ATM) functions as a key initiator and coordinator of DNA damage and cellular stress responses. ATM signaling pathways contain many downstream targets that regulate multiple important cellular processes, including DNA damage repair, apoptosis, cell cycle arrest, oxidative sensing, and proliferation. Over the past few decades, associations between germline ATM pathogenic variants and cancer risk have been reported, particularly for breast and pancreatic cancers. In addition, given that ATM plays a critical role in repairing double-strand breaks, inhibiting other DNA repair pathways could be a synthetic lethal approach. Based on this rationale, several DNA damage response inhibitors are currently being tested in ATM-deficient cancers. In this review, we discuss the current knowledge related to the structure of the ATM gene, function of ATM kinase, clinical significance of ATM germline pathogenic variants in patients with hereditary cancers, and ongoing efforts to target ATM for the benefit of cancer patients.



Author(s):  
Iain A. Richard ◽  
Joshua T. Burgess ◽  
Kenneth J. O’Byrne ◽  
Emma Bolderson

The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.



Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4259
Author(s):  
Lukas Perkhofer ◽  
Talia Golan ◽  
Pieter-Jan Cuyle ◽  
Tamara Matysiak-Budnik ◽  
Jean-Luc Van Laethem ◽  
...  

Impaired DNA damage repair (DDR) is increasingly recognised as a hallmark in pancreatic ductal adenocarcinoma (PDAC). It is estimated that around 14% of human PDACs harbour mutations in genes involved in DDR, including, amongst others, BRCA1/2, PALB2, ATM, MSH2, MSH6 and MLH1. Recently, DDR intervention by PARP inhibitor therapy has demonstrated effectiveness in germline BRCA1/2-mutated PDAC. Extending this outcome to the significant proportion of human PDACs with somatic or germline mutations in DDR genes beyond BRCA1/2 might be beneficial, but there is a lack of data, and consequently, no clear recommendations are provided in the field. Therefore, an expert panel was invited by the European Society of Digestive Oncology (ESDO) to assess the current knowledge and significance of DDR as a target in PDAC treatment. The aim of this virtual, international expert meeting was to elaborate a set of consensus recommendations on testing, diagnosis and treatment of PDAC patients with alterations in DDR pathways. Ahead of the meeting, experts completed a 27-question survey evaluating the key issues. The final recommendations herein should aid in facilitating clinical practice decisions on the management of DDR-deficient PDAC.



Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document