scholarly journals Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens

1998 ◽  
Vol 26 (2) ◽  
pp. 118-122 ◽  
Author(s):  
Smith-Palmer ◽  
Stewart ◽  
Fyfe
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2124
Author(s):  
Giulia Vanti ◽  
Ekaterina-Michaela Tomou ◽  
Dejan Stojković ◽  
Ana Ćirić ◽  
Anna Rita Bilia ◽  
...  

Food poisoning is a common cause of illness and death in developing countries. Essential oils (EOs) could be effective and safe natural preservatives to prevent and control bacterial contamination of foods. However, their high sensitivity and strong flavor limit their application and biological effectiveness. The aim of this study was firstly the chemical analysis and the antimicrobial evaluation of the EOs of Origanum onites L. and Satureja thymbra L. obtained from Symi island (Greece), and, secondly, the formulation of propylene glycol-nanovesicles loaded with these EOs to improve their antimicrobial properties. The EOs were analyzed by GC-MS and their chemical contents are presented herein. Different nanovesicles were formulated with small average sizes, high homogeneity, and optimal ζ-potential. Microscopic observation confirmed their small and spherical shape. Antibacterial and antifungal activities of the formulated EOs were evaluated against food-borne pathogens and spoilage microorganisms compared to pure EOs. Propylene glycol-nanovesicles loaded with O. onites EO were found to be the most active formulation against all tested strains. Additionally, in vitro studies on the HaCaT cell line showed that nanovesicles encapsulated with EOs had no toxic effect. The present study revealed that both EOs can be used as alternative sanitizers and preservatives in the food industry, and that their formulation in nanovesicles can provide a suitable approach as food-grade delivery system.


2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2015 ◽  
Vol 7 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Yesim Ozogul ◽  
Esmeray Kuley ◽  
Yilmaz Ucar ◽  
Fatih Ozogul

2017 ◽  
Vol 54 (13) ◽  
pp. 4344-4352 ◽  
Author(s):  
M. I. S. Santos ◽  
S. R. Martins ◽  
C. S. C. Veríssimo ◽  
M. J. C. Nunes ◽  
A. I. G. Lima ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Mojtaba Yousefi ◽  
Nasim Khorshidian ◽  
Hedayat Hosseini

One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.


2008 ◽  
Vol 74 (9) ◽  
pp. 2908-2914 ◽  
Author(s):  
Robert K. Shaw ◽  
Cedric N. Berger ◽  
Bart Feys ◽  
Stuart Knutton ◽  
Mark J. Pallen ◽  
...  

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains are important food-borne pathogens that use a filamentous type III secretion system (fT3SS) for colonization of the gut epithelium. In this study we have shown that EHEC O157 and O26 strains use the fT3SS apparatus for attachment to leaves. Leaf attachment was independent of effector protein translocation.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Mallappa Kumara Swamy ◽  
Mohd Sayeed Akhtar ◽  
Uma Rani Sinniah

A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.


Sign in / Sign up

Export Citation Format

Share Document