scholarly journals Expanding of spheres the application of borehole hydro-production technology to develop deposits of non-traditional hydrocarbons

2018 ◽  
Vol 60 ◽  
pp. 00018 ◽  
Author(s):  
Mykhailo Pedchenko ◽  
Larysa Pedchenko

The reserves of oceanic hydrates of methane and natural bitumen in times exceed the stocks of traditional oil and gas. The purpose is the analysis of the adaptation possibility of borehole mining technology for the development of bituminous sands deposits and marine gas hydrates was the purpose of the study. The variants of the HBM technology adaptation for the development of bituminous sands and gas hydrates deposits are proposed. The method of extracting gas hydrates based on HBM technology involves them removal without the energy consumption for phase transition. The main advantages of the development of bituminous sands deposits on the basis of HBM technology are: the possibility them extraction in the range of depths 75 – 200 m, the potential high rate of bitumen extraction, the separation of bitumen from the rock in production, the minimum impact on the environment, the possibility of conducting extraction of natural bitumen in areas covered with water.

2003 ◽  
Vol 762 ◽  
Author(s):  
Guofu Hou ◽  
Xinhua Geng ◽  
Xiaodan Zhang ◽  
Ying Zhao ◽  
Junming Xue ◽  
...  

AbstractHigh rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σph/σd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


1996 ◽  
Vol 34 (11) ◽  
pp. 125-132 ◽  
Author(s):  
Baozhen Wang ◽  
Wenyi Dong ◽  
Jinlan Zhang ◽  
Xiangdong Cao

The results of an experimental study conducted in a full-scale high rate pond system treating piggery wastewater at Jianfengshan Piggery, Panyu City, Guandong Province, are presented. The system consists of two advanced anaerobic ponds (AAP) in parallel, followed by an anaerobic transformation pond (ATP) and a five-cell algae-bacterial pond (ABP). The mechanism of the AAP is described and the hydraulic flow pattern analyzed. Fermentation pits (FP) built on the bottom performed very efficiently, operating like UASB in principle. A new concept of ATP is advanced, based on its ability to transform poorly degradable materials to more easily degradable ones. It was found in the study that the HRP system was more efficient, more reliable and saved 40% land area compared with a conventional pond system. Economic analyses of both the energy consumption and the benefit to the pond system of fish farming are also included in the paper.


1993 ◽  
Vol 28 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Suzuki ◽  
S. Miyahara ◽  
K. Takeishi

Gas-permeable film can separate air and water, and at the same time, let oxygen diffuse from the air to the water through the film. An oxygen supply method using this film was investigated for the purpose of reducing energy consumption for wastewater treatment. The oxygen transfer rate was measured for the cases with or without biofilm, which proved the high rate of oxygen transfer in the case with nitrifying biofilm which performed nitrification. When the Gas-permeable film with nitrifying biofilm was applied to the treatment of wastewater, denitrifying biofilm formed on the nitrifying biofilm, and simultaneous nitrification and denitrification occurred, resulting in the high rate of organic matter and T-N removal (7 gTOC/m2/d and 4 gT-N/m2/d, respectively). However, periodic sloughing of the denitrifying biofilm was needed to keep the oxygen transfer rate high. Energy consumption of the process using the film in the form of tubes was estimated to be less than 40% of that of the activated sludge process.


2021 ◽  
Author(s):  
Ayman Ismail Al Zawaideh ◽  
Khalifa Hassan Al Hosani ◽  
Igor Boiko ◽  
Abdulla AlQassab ◽  
Ibrahim Khan

Abstract Compressors are widely used to transport gas offshore and onshore. Oil rigs and gas processing plants have several compressors operating either alone, in parallel or in trains. Hence, compressors must be controlled optimally to insure a high rate of production, and efficient power consumption. The aim of this paper is to provide a control algorithm to optimize the compressors operation in parallel in process industries, to minimize energy consumption in variable operating conditions. A dynamic control-oriented model of the compression system has been developed. The optimization algorithm is tested on an experimental prototype having two compressors connected in parallel. The developed optimization algorithm resulted in a better performance and a reduction of the total energy consumption compared to an equal load sharing scheme.


2020 ◽  
Author(s):  
Mohammed Abdo Alwani ◽  
Mohammed Ahmad Soliman

Abstract The objective of this paper is to showcase successful and innovative means and techniques to improve and enhance centrifugal gas compressors (CGCs) performance, using methods to minimize power consumption, with no need for capital investment. These techniques will assure, if effectively followed, considerable reduction of the consumed energy. CGCs are the most widely used equipment in the oil and gas industry to boost gas, mainly hydrocarbons, to satisfy process treatments and pipeline requirements. In addition, CGCs are one of the major energy consumers, and therefore present an exceptional opportunity for saving energy. Focusing on lowering inlet gas temperatures, considering suction throttling of discharge pressure instead of the traditional discharge throttling, will help to reduce energy consumption. In this paper, a detailed analysis of factors aggravate or lead to undesired CGCs performance will be discussed along with solutions to minimize adverse impact. For example, operating the gas compressors at relatively high inlet temperature will result in higher energy consumption. After performing need analysis, results prove that we would save 3-7% of running compressors consumed energy. In addition, during compressor design phase, it was found that most motor driven compressor system uses discharge throttling, which incurs high-energy consumption. Instead, it is recommended to consider suction throttling to control discharge pressure, as will be explained. This paper will focus on a detailed case study in one of the running CGCs in an upstream gas-oil separation plant (GOSP-A). This paper proves the effectiveness of the proposed techniques in reinstating the CGCs in GOSP-A, to ensure better performance and save energy. This innovative technique is based on extensive process data analysis — evaluating operating, design data, related performance curves, and reviewing international standards. It will be illustrated that this type of analysis and techniques is a valuable tool for saving energy, in most cases, at oil and gas industries


2020 ◽  
Vol 8 (6) ◽  
pp. 3222-3227 ◽  
Author(s):  
Xiao Wang ◽  
Baoqi Wang ◽  
Yuxin Tang ◽  
Ben Bin Xu ◽  
Chu Liang ◽  
...  

In situ polymerization is used to obtain PEDOT tightly coated MnHCF, inhibiting phase transition and Mn dissolution during cycling.


2021 ◽  
Vol 05 (01) ◽  
pp. 04-10
Author(s):  
Sabir Babaev ◽  
Ibrahim Habibov ◽  
Zohra Abiyeva

Prospects for the further development of the oil and gas industry are mainly associated with the development and commissioning of high-rate fields. In this regard, the production of more economical and durable equipment by machine-building enterprises, an increase in the level of its reliability and competitiveness, as well as further improvement of technological production processes, is of paramount importance. The evolution of technology in a broad sense is a representation of changes in designs, manufacturing technology, their direction and patterns. In this case, a certain state of any class of TC is considered as a result of long-term changes in its previous state; transition from existing and applied in practice vehicles to new models that differ from previous designs. These transitions, as a rule, are associated with the improvement of any performance criteria or quality indicators of the vehicle and are progressive in nature. The work is devoted to the study of the evolution of the quality of high-pressure valves during the period of their intensive development. Keywords: technical system, evolution of technology, high-pressure valves, shut-off devices, gate.


2021 ◽  
pp. 1-60
Author(s):  
John Decker ◽  
Philip Teas ◽  
Daniel Orange ◽  
Bernie B. Bernard

From 2015 to 2018, TGS conducted a comprehensive multiclient oil and gas seep hunting survey in the Gulf of Mexico. The basis for identifying seeps on the sea bottom was a high-resolution Multi-Beam Echo Sounder survey, mapping approximately 880,000 km2 of the sea bottom deeper than 750 m water depth, at a bathymetric resolution of 15 m and a backscatter resolution of 5 m. We have identified more than 5000 potential oil and/or gas seeps, and of those, we cored approximately 1500 for hydrocarbon geochemical analysis. The sea bottom features best related to hydrocarbon seepage in the GoM are high backscatter circular features with or without bathymetric expression, high backscatter features with “flow” appearance, mud volcanoes, pock marks, brine pools, “popcorn” texture, faults, and anticlinal crests. We also tracked gas plumes in the water column back to the sea bottom to provide an additional criterion for hydrocarbon seepage. Cores from sea bottom targets recovered liquid oil, tar, and gas hydrates. Oil extract and gas analyses of samples from most target types produced values substantially higher than background in oil and gas.


Sign in / Sign up

Export Citation Format

Share Document