scholarly journals Waste treatment of remazol blue compounds based on ozonation/AOP in a bubble column reactor

2018 ◽  
Vol 67 ◽  
pp. 04017
Author(s):  
Meidina Sekar Nadisti ◽  
Nur Annisa ◽  
Eva Fathul Karamah ◽  
Nelson Saksono ◽  
Setijo Bismo

Increased production in the textile industry has the potential to result in high dye waste water. Various conventional methods to handle with textile waste treatment have been done, but still considered not yet or less effective. The AOP technology (Advanced Oxidation Processes) applied in this research is a rapid degradation technology in textile wastes with advanced oxidation process through the formation of hydroxyl radical (OH) which is considered to optimize the degradation process of textile dye waste. This study aims to evaluate the performance of ozonation methods and AOP (O3/UV/H2O2) in dye degradation of textile wastewater containing remazol blue compounds. Both configuration methods used are optimized in several parameters such as waste flow rate, ozone voltage and pH to obtain maximum remazol blue degradation. From this study, the higher percentage to remazol blue degradation is 99.99%, which is achieved by AOP method, with double air injection air flow rate of 10 L/min and 0.25 L/min liquid flow rate.

2018 ◽  
Vol 67 ◽  
pp. 04019 ◽  
Author(s):  
Nur Annisa ◽  
Meidina Sekar Nadisti ◽  
Eva Fathul karamah ◽  
Setijo Bismo

Naturally, textile waste and its complexity will grow significantly in tandem with the increasingly diverse production of the textile industry. In Indonesia, one of the leading textile industry is batik industry. These textile dye compounds as well as their corresponding phenolic compounds in batik waste are considered and treated as well as can cause acute toxicity and mutagenic effects for aquatic ecosystems. Ozone is an effective wastewater treatment technique by using ozone formation which can optimize the degradation process of batik wastewater. This study aims to test the ability of ozonation techniques in the process of removal remazol blue (RB-19) batik dyes or phenolic compounds (phenol and 4-chlorophenol) in bubble column reactor under basic condition (pH about 10). From experiment result, it was found that in 60-minutes degradation process with ozonation technique for RB-19 dye reached 99.70% and 4-chlorophenol reached 62.79%. The optimum condition of the treatment process was obtained by using air flow rate 10 L/min for RB-19 dye and 12 L/min for 4-chlorophenol, using a multi ozone injection system, and flow rate of wastewater 250 mL/min.


2020 ◽  
Vol 234 (2) ◽  
pp. 279-294 ◽  
Author(s):  
Aneela Jamil ◽  
Tanveer Hussain Bokhari ◽  
Munawar Iqbal ◽  
Ijaz Ahmad Bhatti ◽  
Muhammad Zuber ◽  
...  

AbstractIn view of promising efficiency of advanced oxidation process (AOP), gamma radiation in combination with H2O2 was employed for the degradation of disperse red 73 (DR73) dye. Cs-137 gamma radiation source was used for dye aqueous solution irradiation. The process variables such as pH (3–9), H2O2 concentration (0.3–0.9 mL), gamma radiation absorbed dose (1–20 kGy) and DR73 initial concentration (50–150 mg/L) were optimized for maximum degradation of dye. The efficiency of AOP was evaluated on the basis of dye degradation, water quality parameters and toxicity reduction. Degradation of DR73 was achieved 69% using gamma radiation absorbed dose of 20 kGy and at the same dose 96.3% degradation was achieved in the presence of 0.9 mL/L H2O2. The dye degradation found to be dependent on dye initial concentration and pH of the medium. The radiolytic progress of DR73 was monitored by Fourier transform infrared (FTIR) and UV-Visible spectroscopy. The chemical oxygen demand (COD) and biological oxygen demand (BOD) were reduced significantly in response of treatment of dye at optimum conditions of process variables. The toxicity of treated and un-treated dye solution was monitored by haemolytic and Ames assays. Results revealed that the toxicity of DR73 dye was also reduced significantly after treatment. Findings revealed that the gamma radiation based AOPs are promising and could possibly be used for the remediation of textile wastewater contains toxic dyes.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 233 ◽  
Author(s):  
Lucyna Bilińska ◽  
Kazimierz Blus ◽  
Marta Gmurek ◽  
Renata Żyłła ◽  
Stanisław Ledakowicz

Extremely high volumes of salty wastewater are produced by textile manufacturers daily. Therefore, brine recycling from the wastewater should be regarded as a crucial issue within the textile industry. Ozonation was used in this two-part study as a purification method for industrial textile wastewater polluted by low-molecular-weight salts (LMWS). Part 1 revealed the accumulation of ozonation by-products in a multi-recycling system. The objective of Part 2 was the scaling-up of the process and the investigation of the occurrence of by-products. It was found that ozonation works well in an alkaline reaction medium, which was characteristic of the wastewater from a dye house; an almost complete color removal was achieved within 30 min of treatment. The brine that was produced from the wastewater treated by ozonation in a 20 L bubble column reactor was recycled successfully. Dyeing of cotton with five types of reactive dyes in various shades resulted in very good values of DECMC, which is the normative color matching parameter, and were between 0.15 and 1.2. The color fastness obtained for upcycled fabrics were satisfactory, and not worse than standard values. Although accumulation of the side products was detected in Part 1, the fabric discharges produced in the scaled-up process were free from carcinogenic amines and heavy metals. The study indicated that ozonation can be applied in the industry as a method for textile wastewater recycling.


2016 ◽  
Vol 74 (9) ◽  
pp. 1999-2009 ◽  
Author(s):  
Sayed Mohammad Bagher Hosseini ◽  
Narges Fallah ◽  
Sayed Javid Royaee

This study evaluates the advanced oxidation process for decolorization of real textile dyeing wastewater containing azo and disperse dye by TiO2 and UV radiation. Among effective parameters on the photocatalytic process, effects of three operational parameters (TiO2 concentration, initial pH and aeration flow rate) were examined with response surface methodology. The F-value (136.75) and p-value <0.0001 imply that the model is significant. The ‘Pred R-Squared’ of 0.95 is in reasonable agreement with the ‘Adj R-Squared’ of 0.98, which confirms the adaptability of this model. From the quadratic models developed for degradation and subsequent analysis of variance (ANOVA) test using Design Expert software, the concentration of catalyst was found to be the most influential factor, while all the other factors were also significant. To achieve maximum dye removal, optimum conditions were found at TiO2 concentration of 3 g L−1, initial pH of 7 and aeration flow rate of 1.50 L min−1. Under the conditions stated, the percentages of dye and chemical oxygen demand removal were 98.50% and 91.50%, respectively. Furthermore, the mineralization test showed that total organic compounds removal was 91.50% during optimum conditions.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5793
Author(s):  
Eero Inkeri ◽  
Tero Tynjälä

The demand for carbon capture is increasing over time due to rising CO2 levels in the atmosphere. Even though fossil emission could be decreased or even eliminated, there is a need to start removing CO2 from the atmosphere. The removed CO2 could be either stored permanently to a reservoir (CCS, Carbon Capture and Storage) or utilized as a raw material in a long-lasting product (CCU, Carbon Capture and Utilization). The capture of CO2 could be done by direct air capture, or capturing CO2 from biogenic sources. Amine absorption is the state-of-the-art method to capture CO2, but it has some drawbacks: toxicity, high heat demand, and sorbent sensitivity towards impurities such as sulfur compounds and degradation in cyclic operation. Another potential solvent for CO2 could be water, which is easily available and safe to use in many applications. The problem with water is the poorer solubility of CO2, compared with amines, which leads to larger required flow rates. This study analyzed the technical feasibility of water absorption in a counterflow bubble column reactor. A dynamic, one-dimensional multiphase model was developed. The gas phase was modeled with plug flow assumption, and the liquid phase was treated as axially dispersed plug flow. CO2 capture efficiency, produced CO2 mass flow rate, and the product gas CO2 content were estimated as a function of inlet gas and liquid flow rate. In addition, the energy consumption per produced CO2-tonne was calculated. The CO2 capture efficiency was improved by increasing the liquid flow rate, while the CO2 content in product gas was decreased. For some of the studied liquid flow rates, an optimum gas flow rate was found to minimize the specific energy consumption. Further research is required to study the integration and dynamical operation of the system in a realistic operation environment.


2008 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Yan Lan ◽  
Rinat Nigmatullin ◽  
Gianluca Li Puma

AbstractThe treatment of industrial cork-processing water at natural pH (6.45) by ozonation alone and ozone based advanced oxidation processes (O


Author(s):  
Mehrangiz Pourgholi ◽  
Reza Masoomi Jahandizi ◽  
Mohammadbagher Miranzadeh ◽  
Ommolbanin Hassan Beigi ◽  
Samaneh Dehghan

Introduction: Textile industry effluent is a complex sewage with chemical and color materials that is discharged into the environment and can cause serious problems. In this way using advanced oxidation methods and finding the best methods for removing color materials is necessary. An experimental method was done on Kashan textile industry effluent in laboratory scale and batch system. Material and Methods: Initially, optimal condition was obtained for O3 and H2O2 and followed by advanced oxidation methods (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3) in different reaction times and pH on dye removal and COD (chemical oxygen demand) were determined. The results were compared with complex repetition method. Results: The results of this research showed that dye removal impact and COD based on the type of process and reaction time in UV/H2O2/O3 by 30 minute time duration, was the most effective method. UV/H2O2 in 10 minute time duration was the least effective method. COD and color removal, based on the process in UV/H2O2/O3 and pH = 6 was the most effective. The effect of UV/H2O2 and pH = 4 was the least efficient method on dye material removing. Results showed that the treatment time was effective on color removing (P < 0/001) statistically. Conclusion: It can be concluded that UV/H2O2/O3 was the most efficient on color removing process, compared to the others, due to co-incidence presence of strongly numerous oxidants and their aggravating effect through producing active hydroxyl radicals (OH˚).


2020 ◽  
Vol 80 (3) ◽  
pp. 615-620
Author(s):  
Ü. D. Gül

Abstract Synthetic dyes, particularly reactive and acid dyes, are commonly used in the textile industry because of their advantages as excellent color fastness and brightness. Also, surfactants are used for an increment of coloring success in the textile industry. One of the major problems concerning textile wastewater is the treatment of the effluents containing both dyes and surfactants. Biological treatment systems are recommended as useful, economic and eco-friendly methods for treatment of industrial wastewater. The purpose of this study was to investigate the binary removal of a textile dye and a surfactant by growing Aspergillus versicolor culture in molasses medium. The effect of dye and surfactant concentration on the removal of dye and surfactant was determined. This study resulted that 100% of the surfactant and dye molecules removed together with the formation of a dye-surfactant complex by fungus. It is concluded that binary removal systems are very efficient for industrial wastewater treatment.


2020 ◽  
Vol 13 (1) ◽  
pp. 67-73
Author(s):  
Elaf Thamera ◽  
Salih Abduljabbar Rushdi

In this work, an absorption technology   was used actually to investigation the  mass transfer coefficient of carbon dioxide from a gaseous mixture (air, carbon dioxide) in  blended solution Monoethanolamine (MEA) and Diethanolamine (DEA)  in a bubble column reactor (BCR) . The bubble column reactor(BCR) was made of Plexiglas with 1.5 m high and 0.1 m inside diameter. The overall mass transfer coefficient (  was evaluated at different operating conditions , gas flow rate, air Flow rate ,liquid flow rate .Where the gas flow rates were 10, 15 and 20 L /min ,  air flow rate 100,150 and 200 L/h ,and liquid flow rate 5 ,10,15 L /min . This experiment  by   using  continuous   process with helping centrifugal  pump  . High-performance gas chromatographic (GC) was performed to evaluate  loading during absorption experiment . The  experimental results have shown that the   loading in range of  0.581-1.367 (mol  /mole amine),and the maximum value of overall mass transfer coefficient ( KG) was 0.04 S-1 .


Sign in / Sign up

Export Citation Format

Share Document