scholarly journals The use of green walls and the impact on air quality and life standard

2019 ◽  
Vol 116 ◽  
pp. 00096
Author(s):  
Małgorzata Wesołowska ◽  
Marta Laska

People living in urban areas are exposed to a number of threats related with dense urban tissue and high number of vehicles. These include air pollutions, traffic noise and high temperatures. In addition, large cities are struggling with high energy consumption for heating and cooling purposes. One of the possibilities to reduce the mentioned undesirable effects is the use of vegetation on the walls. Plants absorbs the pollutants of air, produced the oxygen, mounted on external walls create thermal insulation and positively affect the psychological aspect. Green walls can be used both indoors and outdoors. The article presents literature review on green walls, describes their benefits and presents the calculations SPBT and possible energy savings taking into account the transmission losses for small residential building.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2021 ◽  
Vol 13 (3) ◽  
pp. 1360
Author(s):  
Teodora M. Șoimoșan ◽  
Ligia M. Moga ◽  
Livia Anastasiu ◽  
Daniela L. Manea ◽  
Aurica Căzilă ◽  
...  

Harnessing renewable energy sources (RES) using hybrid systems for buildings is almost a deontological obligation for engineers and researchers in the energy field, and increasing the percentage of renewables within the energy mix represents an important target. In crowded urban areas, on-site energy production and storage from renewables can be a real challenge from a technical point of view. The main objectives of this paper are quantification of the impact of the consumer’s profile on overall energy efficiency for on-site storage and final use of solar thermal energy, as well as developing a multicriteria assessment in order to provide a methodology for selection in prioritizing investments. Buildings with various consumption profiles lead to achieving different values of performance indicators in similar configurations of storage and energy supply. In this regard, an analysis of the consumption profile’s impact on overall energy efficiency, achieved in the case of on-site generation and storage of solar thermal energy, was performed. The obtained results validate the following conclusion: On-site integration of solar systems allowed the consumers to use RES at the desired coverage rates, while restricted by on-site available mounting areas for solar fields and thermal storage, under conditions of high energy efficiencies. In order to segregate the results and support optimal selection, a multicriteria analysis was carried out, having as the main criteria the energy efficiency indicators achieved by hybrid heating systems.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


Author(s):  
Jacek Borowski

In this chapter, the impact of climbing plants on facades of buildings and their surroundings is presented. Benefits and risks of plant growth on the walls are discussed with respect to their durability. Economic benefits from the presence of vines are shown including energy savings for home heating and cooling. Additionally, the phytoremediation (cleaning up the environment by plants) properties of vines are describe. It should be stated that climbing plants can contribute to damage only in places where facades are damaged, plaster cracked, or where plants are incorrectly planted.


2018 ◽  
Vol 15 (139) ◽  
pp. 20170946 ◽  
Author(s):  
Morgan R. Frank ◽  
Lijun Sun ◽  
Manuel Cebrian ◽  
Hyejin Youn ◽  
Iyad Rahwan

The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions. We demonstrate that large cities exhibit increased occupational and skill specialization due to increased abundance of managerial and technical professions. These occupations are not easily automatable, and, thus, reduce the potential impact of automation in large cities. Our results pass several robustness checks including potential errors in the estimation of occupational automation and subsampling of occupations. Our study provides the first empirical law connecting two societal forces: urban agglomeration and automation's impact on employment.


Environments ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Rosa Alsina-Pagès ◽  
Robert Garcia Almazán ◽  
Marc Vilella ◽  
Marc Pons

Noise pollution is a critical factor and it has an important impact on public health, with the relationship between road traffic noise (RTN) and several illnesses in urban areas of particular concern. Andorra is currently developing a national strategy regarding noise pollution in their urban environments. The Ministry of Environment, Agriculture and Sustainability is trying to to identify, monitor, map and model the effects of noise pollution and design mitigation policies to reduce the impact in certain priority areas. This analysis should take into account the existence of different types of anomalous noise events (ANEs) present in the street, e.g., horns, people talking, music, and other events that coexist with RTN, to characterize the soundscape of each of the locations. This paper presents a preliminary analysis considering both the Signal-to-Noise Ratio (SNR) and the duration of the ANEs to evaluate their presence in urban areas in the three different locations in Andorra la Vella and Escaldes-Engordany. The experiments conducted required a 10-h recording campaign distributed in the three locations under study, which was evaluated on two different days, one during the week and the other on the weekend. Afterwards, the data were carefully labeled and the SNR of each event was evaluated to determine the potential impact of the four categories under study: vehicles, works, city life and people.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Baurzhan Jangeldinov ◽  
Shazim Ali Memon ◽  
Jong Kim ◽  
Marzhan Kabdrakhmanova

Phase change materials have been applied to a building framework to decrease energy and fossil fuel consumption as well as make the building sector more sustainable. Lightweight structures are attractive and increasingly being used in residential buildings. Hence, in this research, the energy efficiency and thermal performance of buildings located in eight various cities (Helsinki, Kiev, Saint Petersburg, Moscow, Stockholm, Toronto, Montreal, and Kiev) of warm summer humid continental climate (Dfb) were evaluated. The impact of heating and cooling energy savings pattern on the selection of optimum phase change material for each city has been demonstrated. In addition, the impact of volume of PCM, precisely the effect of varying and constant volume, on energy savings was assessed for the lightweight steel-framed building. Simulations were performed in EnergyPlus by applying eleven melting temperature ranges of PCM. Test results demonstrated that energy savings were higher in the swing season and the maximum temperature reduced during these months was 3.3°C. Heating and cooling energy savings were found to strongly influence the selection of optimum PCM. In cities where cooling energy savings were the highest, the optimum PCMs were PCMs 24-26 while in cities where heating energy savings were the highest, the optimum PCM was found to be PCM 21. For constant volume, the performance of optimum PCM raised when the surface area was enlarged, while the thickness of PCM was reduced. Overall, the application of PCM into lightweight steel-framed residential structure located in warm summer humid continental climate region is a feasible option.


Author(s):  
Dasaraden Mauree ◽  
Silvia Coccolo ◽  
Dasun Perera ◽  
Vahid Nik ◽  
Jean-Louis Scartezzini ◽  
...  

Building more energy efficient and sustainable urban areas that will both mitigate the effect of climate change and adapt for the future climate, requires the development new tools and methods that can help urban planners, architect and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099) were run as well as a renovation scenario (Minergie-P). We analyse the impact of climate change on the heating and cooling demand of the buildings and determined the relevance of the accounting of the local climate in this particular context. The results from the simulations showed that in the future there will a constant decrease in the heating demand while for the cooling demand there will be a significant increase. It was further demonstrated that when the local climate was taken into account there was an even higher rise in the cooling demand but also that the proposed renovations were not sufficient to design resilient buildings. We then discuss the implication of this work on the simulation of building energy consumption at the neighbourhood scale and the impact of future local climate on energy system design. We finally give a few perspective regarding improved urban design and possible pathways for the future urban areas.


Author(s):  
Fadi Salah ◽  
Merve Tuna Kayılı

Reducing the energy needs of existing buildings has a significant place in reducing global energy demands. High energy savings can be achieved with passive renovation suggestions in existing buildings. In this study, the effect of the proposed renovations for an educational structure in Safranbolu on the heating and cooling demands of the building was determined with a simulation program. Energy improvements of up to 70 percent have been achieved through passive improvement designs in orientation and insulation material. The highest energy saving (69.31 %) was realized through a scenario of rearranging spaces from the north side to the south side where the number of users is relatively high and selecting a 20 cm aerogel thermal insulation material. While the heating and cooling load, in accordance with the definition of a zero-energy building, could not be reached in this scenario, the study showed the importance of holistic decisions taken in the design phase of the building with respect to energy-efficient building design.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 817
Author(s):  
El-Sayed Khater ◽  
Taha Ashour ◽  
Samir Ali ◽  
Manar Saad ◽  
Jasna Todic ◽  
...  

The need for heating and cooling in traditional housing is becoming increasingly disadvantageous regarding high energy costs. But what is more concerning is the impact on our environment. The main goal of this paper is studying the prospects of using renewable energy for heating and cooling houses through an integrated bio-solar system in order to solve the energy scarcity problem. For this purpose, a simulation model for a bio-solar house made from different materials (walls made of bricks with straw bales and a roof made of concrete with straw bales) was developed successively in accordance with the energy balance and renewable energies such as biogas and solar energy were applied. This approach enabled an enhancement of the main factors affecting the performance of a building in terms of saving energy. The model was able to predict the energy requirements for heating and cooling of houses, the energy gained by a solar collector and by a biogas digester as well as the energy requirement for heating the biogas digester. Also, the purpose of this paper is to validate this developed simulation model by measuring energy requirements for heating of houses and solar radiation for solar collectors. The model is a simulation model for the bio-solar house with its three main parts—a straw house, a solar collector and a biogas digester. This paper demonstrates the values of the performed measurements and compares them to the theoretical, predicted values. The comparison indicates that the predicted energy requirements for the heating of buildings were a close approximation to the measured values. Another relevant deduction of the validation was the fact that the solar collector delivered the highest heat gain on 21st of June.


Sign in / Sign up

Export Citation Format

Share Document