scholarly journals Parameters of heat treatment increased concrete strength at its watertightness

2019 ◽  
Vol 97 ◽  
pp. 02021
Author(s):  
Nurmuhamat Asatov ◽  
Mirjalol Tillayev ◽  
Navruzbek Raxmonov

One of the effective methods of land irrigation in the Republic of Uzbekistan is carried out with the help of precast reinforced concrete trays of irrigation systems. In the process of operation, precast concrete trays are influenced by difficult operating conditions. As is known, to achieve high water resistance and concrete strength after heat treatment, it is necessary to take into account such factors as pre-exposure time, temperature rise rate, and isothermal warm-up time. However, the determining factor that has the greatest impact on the water resistance of concrete during heat treatment is the duration of the preliminary exposure and the rate of temperature rise, on which the values of internal stresses in concrete depend on heating. The paper gives the results of scientific research, which, being based on the studies of heat and moisture treatment of concrete in a laboratory steam chamber with automatic control of the regime. Scientific methods and techniques were used in the process of data processing and study findings: systematic approach, methods of system analysis and mathematical statistics. To determine the strength of concrete, cubic samples were made with dimensions of 100×100×100 mm, which were tested at the period of 1,3,7,28 days. After HMT compared with similar characteristics of normal hardening samples. The results of studies of the kinetics of increase in concrete strength depending on the heat treatment regimes are shown in the paper, that, despite the slight difference in the duration of the preliminary curing (1 and 2 hours), there is still a certain difference between them. The scientific novelty lies in the formulation, formalization and solving problems related to water resistance, frost resistance, and at the same time saves heat and power resources of trays.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4102
Author(s):  
Jan Stindt ◽  
Patrick Forman ◽  
Peter Mark

Resource-efficient precast concrete elements can be produced using high-performance concrete (HPC). A heat treatment accelerates hardening and thus enables early stripping. To minimise damages to the concrete structure, treatment time and temperature are regulated. This leads to temperature treatment times of more than 24 h, what seems too long for quick serial production (flow production) of HPC. To overcome this shortcoming and to accelerate production speed, the heat treatment is started here immediately after concreting. This in turn influences the shrinkage behaviour and the concrete strength. Therefore, shrinkage is investigated on prisms made from HPC with and without steel fibres, as well as on short beams with reinforcement ratios of 1.8% and 3.1%. Furthermore, the flexural and compressive strengths of the prisms are measured directly after heating and later on after 28 d. The specimens are heat-treated between 1 and 24 h at 80 °C and a relative humidity of 60%. Specimens without heating serve for reference. The results show that the shrinkage strain is pronouncedly reduced with increasing temperature duration and rebar ratio. Moreover, the compressive and flexural strength decrease with decreasing temperature duration, whereby the loss of strength can be compensated by adding steel fibres.


2020 ◽  
Vol 840 ◽  
pp. 551-557
Author(s):  
Greitta Kusuma Dewi ◽  
Ragil Widyorini ◽  
Ganis Lukmandaru

Ammonium dihydrogen phosphate (ADP) is expected to be an effective catalyst to increase the water-resistance and hasten the curing speed of maltodextrin as wood adhesives. This research investigated the effect of ADP addition on the curing maltodextrin properties. The ratio of maltodextrin/ADP was 100/0 and 90/10 wt%. The heat treatment was 180-220 °C for 10 min. The water-resistance improvement and the chemical changes were analyzed using insoluble matter rate against boiling water and Fourier Transform Infrared (FTIR) analysis, respectively. The thermal behavior of the dried mixture of adhesives was also analyzed through differential scanning calorimetry (DSC) analysis at room temperature until 400 °C. The results showed that the water-resistance properties of maltodextrin increased with the addition of 10 wt% ADP and increasing the heating temperature. FTIR analysis detected a high water-resistant substance of furan in the adhesives with maltodextrin/ADP ratio 90/10 wt% and heat treatment of 220 °C for 10 min. DSC analysis showed that ADP addition can hasten the reaction of maltodextrin as the endotherm peak temperature was shifted from 272 to 204 °C.


1977 ◽  
Vol 5 (2) ◽  
pp. 102-118 ◽  
Author(s):  
H. Kaga ◽  
K. Okamoto ◽  
Y. Tozawa

Abstract An analysis by the finite element method and a related computer program is presented for an axisymmetric solid under asymmetric loads. Calculations are carried out on displacements and internal stresses and strains of a radial tire loaded on a road wheel of 600-mm diameter, a road wheel of 1707-mm diameter, and a flat plate. Agreement between calculated and experimental displacements and cord forces is quite satisfactory. The principal shear strain concentrates at the belt edge, and the strain energy increases with decreasing drum diameter. Tire temperature measurements show that the strain energy in the tire is closely related to the internal temperature rise.


Author(s):  
O. B. Berdnik ◽  
I. N. Tsareva ◽  
M. K. Chegurov

This article deals with structural features and characteristic changes that affect the mechanical characteristics after different service life in real conditions using the example of the blades of the 4th stage of turbine GTE-45-3 with an operating time of 13,000 to 100,000 hours. To study the change in the state of the material under different operating conditions, determine the degree of influence of heat treatment on the regeneration of the microstructure, and restore the mechanical characteristics of the alloy after different periods of operation, non-standard methods were used: relaxation tests on miniature samples to determine the physical yield strength and microplasticity limit and quantitative evaluation of the plasticity coefficient of the material from experimental values of hardness, which allow us to identify the changes occurring in the microvolumes of the material and predict the performance of the product as a whole.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


2021 ◽  
Vol 234 ◽  
pp. 117968
Author(s):  
Yuelan Li ◽  
Yan Yu ◽  
Xue Zhong ◽  
Youmiao Liu ◽  
Long Chen ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 421
Author(s):  
Binwei Zheng ◽  
Weiwei Zhang ◽  
Litao Guan ◽  
Jin Gu ◽  
Dengyun Tu ◽  
...  

A high strength recycled newspaper (NP)/high density polyethylene (HDPE) laminated composite was developed using NP laminas as reinforcement and HDPE film as matrix. Herein, NP fiber was modified with stearic acid (SA) to enhance the water resistance of the NP laminas and NP/HDPE composite. The effects of heat treatment and SA concentration on the water resistance and tensile property of NP and composite samples were investigated. The chemical structure of the NP was characterized with X-ray diffractometer, X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectra techniques. The surface and microstructure of the NP sheets were observed by scanning electron microscopy. An expected high-water resistance of NP sheets was achieved due to a chemical bonding that low surface energy SA were grafted onto the modified NP fibers. Results showed that the hydrophobicity of NP increased with increasing the stearic acid concentration. The water resistance of the composite laminates was depended on the hydrophobicity of the NP sheets. The lowest value of 2 h water absorption rate (3.3% ± 0.3%) and thickness swelling rate (2.2% ± 0.4%) of composite were obtained when the SA concentration was 0.15 M. In addition, the introduction of SA can not only enhance the water resistance of the composite laminates, but also reduce the loss of tensile strength in wet conditions, which shows potential in outdoor applications.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Jana Machotová ◽  
Andréa Kalendová ◽  
Denisa Steinerová ◽  
Petra Mácová ◽  
Stanislav Šlang ◽  
...  

This paper deals with the development of acrylic latexes providing high-performance water-resistant coatings. For this purpose, mutual effects of anionic surfactant type (ordinary and polymerizable), covalent intra- and/or interparticle crosslinking (introduced by allyl methacrylate copolymerization and keto-hydrazide reaction, respectively) and ionic crosslinking (provided by nanostructured ZnO additive) were investigated. The latexes were prepared by the standard emulsion polymerization of methyl methacrylate, butyl acrylate and methacrylic acid as the main monomers. The addition of surface-untreated powdered nanostructured ZnO was performed during latex synthesis, resulting in stable latexes comprising dispersed nanosized additive in the content of ca 0.9-1.0 wt.% (based on solids). The coating performance with emphasis on water resistance was evaluated. It was determined that the application of the polymerizable surfactant improved coating adhesion and water-resistance, but it wasn′t able to ensure high water-resistance of coatings. Highly water-resistant coatings were obtained provided that covalent intra- and interparticle crosslinking together with ionic crosslinking were employed in the coating composition, forming densely crosslinked latex films. Moreover, coatings comprising nanostructured ZnO additive displayed a significant antibacterial activity and improved solvent resistance.


Sign in / Sign up

Export Citation Format

Share Document