scholarly journals Initial Analysis of Plastic Debris Accumulation in the Estuary of Wonorejo River, Surabaya, Indonesia

2020 ◽  
Vol 148 ◽  
pp. 07001
Author(s):  
Setyo Budi Kurniawan ◽  
Muhammad Fauzul Imron

The purpose of this research was to investigate the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Visible plastic debris were collected from three (3) sampling points along the intertidal area of Wonorejo River Estuary. The correlation between sampling points (SPs) and the amount of the collected plastic debris (CPD) was analysed using one-way ANOVA. Result of one-way ANOVA showed that the sampling point was significantly affect the amount of the collected plastic debris (p<0.05). A further analysis using Tukey’s Significance Honest Test indicating a significantly higher CPD on SP2 compared to the SP1 and SP3 (p<0.05). The amount of CPD were 126.07±12.00 g dry weight/m2 from SP1, 375.97±16.72 g dry weight/m2 from SP2, and 291.13±36.28 g dry weight/m2 from SP3. The highest percentage of collected debris item was plastic bags (up to 57.90%), followed by bottle caps (up to 16.65%). The most identified plastic types were Low-Density Polyethylene (LDPE) (up to 73.13%), followed by Polypropylene (PP) (up to 17.22%). Understanding the accumulation of plastic debris in estuary is a fundamental requirement to conduct an advance research related to the marine plastic pollution and to determine further actions to solve this problem.

2021 ◽  
Vol 930 (1) ◽  
pp. 012010
Author(s):  
A Azizi ◽  
W N Setyowati ◽  
S Fairus ◽  
D A Puspito ◽  
D S Irawan

Abstract During the COVID-19 pandemic, the increased use of plastic for personal protective equipment (PPE), single-use plastic bags, and food packaging raised significant environmental concerns. This study aimed to investigate the shape, abundance, and type of microplastics in the sediment of Jakarta Bay, specifically Tanjung Priok, Ancol Beach, and Sunda Kelapa Port. Sediment was collected using an Ekman sediment grab sampler and was extracted using the density separation method. The microplastics were counted and categorized according to the shape under a microscope. The differences in microplastic abundance in three different stations were determined using a one-way ANOVA. The polymer of microplastics was identified using Fourier Transform Infra-Red (FTIR). The results show that the abundance of the microplastics from coastal sediment was highest in the Sunda Kelapa Port (45066.67 ± 5205.13 particle/kg dry weight), which is significantly different (p<0.05) from Tanjung Priok (40533.33 ± 2444.04 particle/kg dry weight) and Ancol Beach (34666.67 ± 2444.04 particle/kg dry weight). Fragments dominated the shape of microplastic in Tanjung Priok, Ancol Beach, and Sunda Kelapa Post, comprising 36%, 40%, 38%, respectively, followed by fiber, film, and pellet. The FT-IR tests indicated that polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyamide are the most prevalent microplastic polymers.


Author(s):  
Aparna Satsangi

Anthropogenic activities are causing slow extinction of fauna, flora, and fungi in natural environment through toxic pollution. It is probably due to industrial and technological advancement in recent decades. This pollution may be of air, water, soil, radioactivity, or plastics. Of these, the most widely spread form is pollution by plastics. It is drastically dangerous and harmful for marine life, but it also affects human health. Since plastic is non-biodegradable, one can hardly get rid of it. The harmful chemicals get absorbed in the plastic debris, have a varied and harmful range of chronic effects like endocrine disorders. Therefore, it is high time for the government to take stringent steps to overcome the problems associated with plastic pollution. Policy makers and advisers should sternly follow the steps: never throw plastic bags on roads; always carry bags from home; and, use paper decorative items rather than of plastics as paper can be reused.


1989 ◽  
Vol 21 (2) ◽  
pp. 161-165 ◽  
Author(s):  
S. I. Kayal ◽  
D. W. Connell

Results of the analysis of twenty-three composite sediment samples revealed that PAHs are widely distributed in the Brisbane River estuary. Mean concentrations for individual compounds, on a dry weight basis, ranged from 0.03 µg/g for dibenz [ah] anthracene to 2.34 µg/g for fluoranthene. Observed PAH assemblages were rich in compounds having pyrolytic origins. However, the presence of petroleum derived compounds was indicative of the importance of petroleum as a PAH source in the estuary. Petroleum refineries, a coal loading terminal and a major treated sewage outfall located at the mouth were not indicated as major contributing sources of PAH pollution in the estuary.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Sanchez-Vidal ◽  
Miquel Canals ◽  
William P. de Haan ◽  
Javier Romero ◽  
Marta Veny

AbstractThere is strong evidence that the seafloor constitutes a final sink for plastics from land sources. There is also evidence that part of the plastics lying on the shallow seafloor are washed up back to the shoreline. However, little is known on the natural trapping processes leading to such landwards return. Here we investigate microplastics and larger plastic debris within beached seagrass remains including balls (aegagropilae) made of natural aggregates of vegetal fibers intertwined by seawater motion. We found up to 1470 plastic items per kg of plant material, which were mainly composed of negatively buoyant polymer filaments and fibers. Our findings show that seagrass meadows promote plastic debris trapping and aggregation with natural lignocellulosic fibers, which are then ejected and escape the coastal ocean. Our results show how seagrasses, one of the key ecosystems on Earth in terms of provision of goods and services, also counteract marine plastic pollution. In view of our findings, the regression of seagrass meadows in some marine regions acquires a new dimension.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1077
Author(s):  
Ana M. Córdova López ◽  
Althiéris de Souza Saraiva ◽  
Carlos Gravato ◽  
Amadeu M. V. M. Soares ◽  
Renato Almeida Sarmento

The present study aims to use behavioral responses of the freshwater planarian Girardia tigrina to assess the impact of anthropogenic activities on the aquatic ecosystem of the watershed Araguaia-Tocantins (Tocantins, Brazil). Behavioral responses are integrative and cumulative tools that reflect changes in energy allocation in organisms. Thus, feeding rate and locomotion velocity (pLMV) were determined to assess the effects induced by the laboratory exposure of adult planarians to water samples collected in the region of Tocantins-Araguaia, identifying the sampling points affected by contaminants. Furthermore, physicochemical and microbiological parameters, as well as the presence of inorganic compounds (dissolved aluminum, total barium, total chloride, dissolved iron, total fluoride, total manganese, nitrates, nitric nitrogen, total sulfate, total zinc) and surfactants, were determined on each specific sampling point. The behavioral biomarkers (feeding rate and pLMV) of the freshwater planarians were significantly decreased when organisms were exposed to water samples from four municipalities (Formoso do Araguaia, Lagoa da Confusão, Gurupi and Porto Nacional), sites of the Tocantins-Araguaia hydrographic region—TAHR. Both behavioral biomarkers decreased up to ~37–39% compared to organisms in ASTM medium only. Our results showed that these behavioral biomarkers can be used for fast screening monitoring of environmental samples of freshwater ecosystems, since a decrease in feeding rate and locomotor activity was observed in sites impacted by anthropogenic activities. However, the absence of effects observed in some sampling points does not represent the absence of contamination, since several other classes of contaminants were not determined. In these negative results, the absence of deleterious effects on behavioral biomarkers might only be indicative that the potential presence of contaminants on such sites does not significantly affect the performance of planarians. This fast screening approach seems to be useful to determine contaminated sites in freshwater ecosystems for biomonitoring purposes. This knowledge will help to develop biomonitoring programs and to decide appropriate sampling sites and analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 149
Author(s):  
Yaohui Li ◽  
Jingfang Shen ◽  
Ziliang Cai ◽  
Yizhong Wu ◽  
Shuting Wang

The kriging optimization method that can only obtain one sampling point per cycle has encountered a bottleneck in practical engineering applications. How to find a suitable optimization method to generate multiple sampling points at a time while improving the accuracy of convergence and reducing the number of expensive evaluations has been a wide concern. For this reason, a kriging-assisted multi-objective constrained global optimization (KMCGO) method has been proposed. The sample data obtained from the expensive function evaluation is first used to construct or update the kriging model in each cycle. Then, kriging-based estimated target, RMSE (root mean square error), and feasibility probability are used to form three objectives, which are optimized to generate the Pareto frontier set through multi-objective optimization. Finally, the sample data from the Pareto frontier set is further screened to obtain more promising and valuable sampling points. The test results of five benchmark functions, four design problems, and a fuel economy simulation optimization prove the effectiveness of the proposed algorithm.


Author(s):  
Siu-Tong Choi ◽  
Yu-Tuan Chou

Abstract The differential quadrature method has lately been more and more often used for analysis of engineering problems as an alternative for the finite element method or finite difference method. In this paper, static, dynamic and buckling analyses of structural components are performed by the differential quadrature method. To improve the accuracy of this method, an approach is proposed for selecting the sampling points which include base points and conditional points. The base points are taken as the roots of the Legendre polynomials. Accuracy of the problems analyzed will be increased by using the base points. The conditional points are determined according to boundary conditions and specified conditions of external load. A modified algorithm is proposed for applying two or more boundary conditions in a sampling point at boundary of domain, such that the higher-order partial differential equation can be solved without adding new sampling points. By applying this approach to variety problems, such as deflections of beam under nonuniformly distributed loading, vibration and buckling analyses of beam and plate, it is found that numerical results of the present approach are more accurate than those obtained by the equally-spaced differential quadrature method and is computationally efficient.


2015 ◽  
Vol 75 (4) ◽  
pp. 914-922 ◽  
Author(s):  
E. L. Medeiros ◽  
G. V. Fernandes ◽  
G. G. Henry-Silva

Abstract This study evaluated the spatial and temporal distribution and density of the bivalve Donax striatus, at beaches close to the Apodi/Mossoró River estuary, through, six semiannual sampling campaigns were performed between April/2009 and October/2011. The sampled area was delimited by 20 transects that were laid perpendicular to the beach line and extended over 300 m in the intertidal zone. Seven sampling points were established in each transect, organisms and sediment were collected, and water temperature and salinity were recorded. The highest D. striatus average density (103 individuals.m–2) was observed in April/2009 and the lowest (18 individuals.m–2) in October/2010. The highest D. striatus densities occurred in beaches further from the estuarine region as demonstrated by a significant positive correlation (r2 = 0.67 and p = 0.0007). The D. striatus densities presented significant negative correlations with the percentages of organic matter in the water. This species demonstrated an aggregated distribution in the studied area.


2020 ◽  
Vol 108 (6) ◽  
pp. 499-508
Author(s):  
Tuba Özdemir Öge ◽  
Firdevs Banu Özdemir

AbstractIn this study, radon concentration measurements and chemical analyses of groundwater samples were performed in four sampling locations of Bartın Province of Western Black Sea Region, Turkey. 222Rn analysis was carried out in groundwater samples with liquid scintillation counting system in accordance with ASTM D5072 standard. The pH, total hardness, alkalinity and dissolved oxygen parameters of the groundwater samples were also determined. The radon concentrations for the water samples ranged between <3.00 Bq/L–12.03 Bq/L. Thirty eight percentage of the samples slightly exceeded the permissible limit of 11.1 Bq/L specified by USEPA for drinking waters. The annual effective doses of groundwater samples were calculated in the range of 7.41–30.74 μSv/y for ingestion of water (Ew.Ig), and in the range of 7.31–30.31 μSv/y for inhalation of radon released from water (Ew.Ih). The total calculated annual effective doses due to ingestion and inhalation were found to be below the limit value of 100 μSv/y specified by the World Health Organization (WHO). The radioactivity measurement results significantly varied for three sampling points but not for one sampling point on two different measurement dates, which is attributed to the differences in geological structure. The chemical analysis results, except for total hardness in two sampling points, were within the permissible limits specified by international standards.


Sign in / Sign up

Export Citation Format

Share Document