scholarly journals A novel acoustic emission parameter for predicting rock failure during Brazilian test based on cepstrum analysis

2020 ◽  
Vol 192 ◽  
pp. 01004
Author(s):  
Honglei Wang ◽  
Zhenlei Li ◽  
Xueqiu He ◽  
Dazhao Song ◽  
Haifeng Guo

Acoustic emission (AE) is widely used in the monitoring of coal and rock stability and early warning of dynamic disasters in mines. In this work, the Brazilian split test was carried out on limestone samples along with collecting full waveform AE signal during the entire loading process. The linear cepstrum coefficient (LCC) was used as the characteristic parameter of AE to analyze the correlation between the LCC of AE and the load of the samples. The results show that the LCC is an effective AE characteristic parameter. The first to fourth parameters of the LCC calculated using 1 s AE waveform meet the linear change relationship with the load of the samples. The correlation coefficients are 0.969, 0.943, 0.925, 0.833, respectively. The LCC of AE proposed in this work can be used as a characteristic parameter for predicting the tensile failure of rocks, which is helpful to improve the application effect of AE in the monitoring of coal and rock dynamic disasters and the stability of high and steep slopes.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhandong Su ◽  
Ke Geng ◽  
Fubiao Zhou ◽  
Jinzhong Sun ◽  
Huayan Yu

Understanding the acoustic emission (AE) characteristics of rocks that have undergone freeze-thaw cycling is of great significance for the use of AE technology to monitor the stability of rock masses in cold regions. A series of freeze-thaw cycling experiments and triaxial compression AE tests of granite samples were performed. The results show that, with an increasing number of freeze-thaw cycles, the P-wave velocity and peak AE intensity of granite show a substantial downward trend. The AE ringing counts during triaxial compression can be divided into three stages: abrupt period, calm period, and failure period. The overall change of the characteristic AE signal of granite samples that underwent different freeze-thaw cycles is the same. The AE signal during the destruction of granite occurs in clear dual dominant frequency bands. The peak frequency increases with increasing load time, and this trend becomes less clear as the number of freeze-thaw cycles increases. Overall, the peak frequency distribution tends to change from high to low with an increasing number of freeze-thaw cycles. The results provide basic data for rock mass stability monitoring and prediction, which is of great significance for engineering construction and management in cold regions.


2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


2021 ◽  
Vol 11 (15) ◽  
pp. 7045
Author(s):  
Ming-Chyuan Lu ◽  
Shean-Juinn Chiou ◽  
Bo-Si Kuo ◽  
Ming-Zong Chen

In this study, the correlation between welding quality and features of acoustic emission (AE) signals collected during laser microwelding of stainless-steel sheets was analyzed. The performance of selected AE features for detecting low joint bonding strength was tested using a developed monitoring system. To obtain the AE signal for analysis and develop the monitoring system, lap welding experiments were conducted on a laser microwelding platform with an attached AE sensor. A gap between the two layers of stainless-steel sheets was simulated using clamp force, a pressing bar, and a thin piece of paper. After the collection of raw signals from the AE sensor, the correlations of welding quality with the time and frequency domain features of the AE signals were analyzed by segmenting the signals into ten 1 ms intervals. After selection of appropriate AE signal features based on a scatter index, a hidden Markov model (HMM) classifier was employed to evaluate the performance of the selected features. Three AE signal features, namely the root mean square (RMS) of the AE signal, gradient of the first 1 ms of AE signals, and 300 kHz frequency feature, were closely related to the quality variation caused by the gap between the two layers of stainless-steel sheets. Classification accuracy of 100% was obtained using the HMM classifier with the gradient of the signal from the first 1 ms interval and with the combination of the 300 kHz frequency domain signal and the RMS of the signal from the first 1 ms interval.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blai Casals ◽  
Karin A. Dahmen ◽  
Boyuan Gou ◽  
Spencer Rooke ◽  
Ekhard K. H. Salje

AbstractAcoustic emission (AE) measurements of avalanches in different systems, such as domain movements in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche energy E, maximum amplitude Amax and duration D as E ~ Amaxx and Amax ~ Dχ with x = 2 and a poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) predicts that x = 3 and χ = 2. The disagreement is due to details of the AE measurements: the initial acoustic strain signal of an avalanche is modified by the propagation of the acoustic wave, which is then measured by the detector. We demonstrate, by simple model simulations, that typical avalanches follow the observed AE results with x = 2 and ‘half-moon’ shapes for the cross-correlation. Furthermore, the size S of an avalanche does not always scale as the square of the maximum AE avalanche amplitude Amax as predicted by MFT but scales linearly S ~ Amax. We propose that the AE rise time reflects the atomistic avalanche time profile better than the duration of the AE signal.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2004 ◽  
Vol 841 ◽  
Author(s):  
Pawel Dyjak ◽  
Raman P. Singh

ABSTRACTMonitoring of acoustic emission (AE) activity was employed to characterize the initiation and progression of local failure processes during nanoindentation-induced fracture. Specimens of various brittle materials were loaded with a cube-corner indenter and AE activity was monitored during the entire loading and unloading event using an AE transducer mounted inside the specimen holder. As observed from the nanoindentation and AE response, there were fundamental differences in the fracture behavior of the various materials. Post-failure observations were used to identify particular features in the AE signal (amplitude, frequency, rise-time) that correspond to specific types of fracture events. Furthermore, analysis of the parametric and transient AE data was used to establish the crack-initiation threshold, crack-arrest threshold, and energy dissipation during failure. It was demonstrated that the monitoring of AE signals yields both qualitative and quantitative information regarding highly local failure events in brittle materials.


2012 ◽  
Vol 487 ◽  
pp. 471-475 ◽  
Author(s):  
Shi Hui Xie ◽  
Mi Mi Li ◽  
Mei Juan Zhou ◽  
Min Sun ◽  
Shi Feng Huang

1-3 orthotropic cement based piezoelectric composites were fabricated by cut-filling and arrange-filling technique, using PZT-51 ceramic as functional material and cement as passive matrix. 1-3 orthotropic cement based piezoelectric composites were prepared into Acoustic Emission (AE) sensors, the attenuation of AE signal on the concrete and the response of different sensors on the concrete with increasing distance were researched. The results showed that the signal strength received by sensing element increases with the increasing PZT volume fraction; signal peaks and amplitude decrease gradually when the testing distance increases; signal strength received on the ceramic title is stronger than on the concrete; the attenuation of signal wave shape received on the concrete is much slower when compared with ceramic title.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


SLEEP ◽  
2021 ◽  
Author(s):  
Alice D LaGoy ◽  
J David Cashmere ◽  
Meaghan E Beckner ◽  
Shawn R Eagle ◽  
Aaron M Sinnott ◽  
...  

Abstract Study Objectives Within-subject stability of certain sleep features across multiple nights is thought to reflect the trait-like behavior of sleep. However, to be considered a trait, a parameter must be both stable and robust. Here, we examined the stability (i.e., across the same sleep opportunity periods) and robustness (i.e., across sleep opportunity periods that varied in duration and timing) of different sleep parameters. Methods Sixty-eight military personnel (14 W) spent 5 nights in the sleep laboratory during a simulated military operational stress protocol. After an adaptation night, participants had an 8-hour sleep opportunity (23:00–07:00) followed by 2 consecutive nights of sleep restriction and disruption which included two 2-hour sleep opportunities (01:00–03:00; 05:00–07:00) and, lastly, another 8-hour sleep opportunity (23:00–07:00). Intra-class correlation coefficients were calculated to examine differences in stability and robustness across different sleep parameters. Results Sleep architecture parameters were less stable and robust than absolute and relative spectral activity parameters. Further, relative spectral activity parameters were less robust than absolute spectral activity. Absolute alpha and sigma activity demonstrated the highest levels of stability that were also robust across sleep opportunities of varying duration and timing. Conclusions Stability and robustness varied across different sleep parameters, but absolute NREM alpha and sigma activity demonstrated robust trait-like behavior across variable sleep opportunities. Reduced stability of other sleep architecture and spectral parameters during shorter sleep episodes as well as across different sleep opportunities has important implications for study design and interpretation.


2013 ◽  
Vol 690-693 ◽  
pp. 2442-2445 ◽  
Author(s):  
Hao Lin Li ◽  
Hao Yang Cao ◽  
Chen Jiang

This work presents an experiment research on Acoustic emission (AE) signal and the surface roughness of cylindrical plunge grinding with the different infeed time. The changed infeed time of grinding process is researched as an important parameter to compare AE signals and surface roughnesses with the different infeed time in the grinding process. The experiment results show the AE signal is increased by the increased feed rate. In the infeed period of the grinding process, the surface roughness is increased at first, and then is decreased.


Sign in / Sign up

Export Citation Format

Share Document