scholarly journals Experimental study on aging performance of elevator polyurethane buffer

2021 ◽  
Vol 236 ◽  
pp. 01051
Author(s):  
Facai Ren ◽  
Tao Jiang ◽  
Xiao Liang ◽  
Shaoyi Hou

In this paper, the hygrothermal aging experiments of polyurethane buffer materials for elevator were carried out for 5 days, 10 days, 15 days, 20 days, 25 days and 33 days. The quality change, hardness change, tensile strength and elongation at break of the test materials before and after the experiment were compared and analyzed. The results show that the aging process of polyurethane materials is accelerated by the humid and hot environment.

2018 ◽  
Vol 75 (6) ◽  
pp. 2245-2256 ◽  
Author(s):  
Eduardo Grimaldo ◽  
Bent Herrmann ◽  
Jørgen Vollstad ◽  
Biao Su ◽  
Heidi Moe Føre ◽  
...  

Abstract Fishing trials were carried out to compare the relative fishing efficiency of gillnets made of a new biodegradable resin (polybutylene succinate co-adipate-co-terephthalate, PBSAT) with conventional (nylon) nets. The fishing trials covered two consecutive fishing seasons (2016 and 2017) for cod (Gadus morhua) and saithe (Pollachius virens) in northern Norway. Results generally showed better catch rates for the nylon gillnets. The biodegradable PBSAT gillnets caught 50.0% and 26.6% fewer cod, and 41.0% and 22.5% fewer saithe than the nylon gillnets in 2016 and 2017, respectively. Even though the relative catch efficiency of the biodegradable gillnets was slightly better in 2017 than in 2016, the difference with respect to the catch efficiency of nylon gillnets may be too large for biodegradable gillnets to be accepted by fishermen if they were available commercially. Tensile strength measurements of the nylon and biodegradable PBSAT gillnets carried out before and after the fishing trials showed that the both types of gillnets had significant reductions in tensile strength and elongation at break, especially in 2017. Although less catch efficient than nylon gillnets, biodegradable PBSAT gillnets show great potential for reducing ghost fishing and plastic pollution at sea, which are major problems in these fisheries.


2011 ◽  
Vol 374-377 ◽  
pp. 1325-1329 ◽  
Author(s):  
Wei Bo Huang ◽  
Jia Yu Xiang ◽  
Ping Lv ◽  
Xin Mao Li

Researches of spray pure polyurea technology for hydraulic concrete protection in water conservancy facilities to ensure long term security operation has a great significance. With an emphasis upon mechanical properties and surface morphology of spray pure polyurea coatings comparing before and after aging by means of the artificial accelerated xenon arc lamp(AAXAL) and scanning electron microscope(SEM) in this paper. Besides, the dry-wet circulation resistance performance of coatings wre analyzed through experiment. It is shown that tensile strength, elongation at break and tear strength of coatings increased by 0.2%, 0.5% and 1.7% respectively after AAXAL aging 720h. By contrast, after aging 3000h the results were 22.6%, 3.8% and 17.4% respectively, the tendency of increasing at first and then reducing can be obtained. The mechanical properties reduced slightly for adding defects of coating surface after aging, however, the resistance performance of ultraviolet ray was excellent. The similar development trend of mechanical properties were gained from dry-wet circulation experiment. After aging 200 cycles, the tensile strength and tear strength descended by 4.1% and 1.7% severally but the elongation at break ascended by 5.0%. In a word, it is suggested that the aging of coatings were negligible in dry-wet circulation in short term.


2015 ◽  
Vol 1123 ◽  
pp. 387-390 ◽  
Author(s):  
Hamidah Harahap ◽  
Adrian Hartanto ◽  
Kelvin Hadinatan ◽  
Indra Surya ◽  
Baharin Azahari

The effect of aging on mechanical properties of natural rubber latex (NRL) products filled with alkanolamide-modified cassava peel waste powder (CPWP) was studied. CPWP used as fillers was prepared by milling and sieving it until the size of 100 mesh. The powder then was dispersed in a suspension containing water and alkanolamide in order to modify the prepared powders. The dispersion system of 10 pphr (part per hundred rubber) then was added into NRL matrix followed by pre-vulcanization at 70°C for 10 minutes. The NRL compound then were casted into films by coagulant dipping method then dried at 120°C for 10 minutes. Afterwards, the films were allowed to cool at room temperature for 24 hours before being aged in a circulation of hot air for 24 hours at 70°C. The properties such as tensile strength, tensile modulus, and elongation at break were evaluated between the aged samples and the unaged samples. From this study, it showed that the aged films have increasing value of tensile strength and tensile modulus while the value of elongation at break decreases. These datas are supported by Scanning Electron Microscope (SEM) micrographs which indicate that the change of morphology in NRL films occurs before and after aging.


2018 ◽  
Vol 926 ◽  
pp. 39-44 ◽  
Author(s):  
Dan Peng ◽  
Qiu Hong Mu ◽  
Shuo Zhang ◽  
Jin Hui Li ◽  
Feng Wang

Phenyl silicone resin reinforced addition type liquid phenyl silicone rubber was prepared by vulcanization of vinyl end-capped polymethylphenylsiloxane (PVPS), phenyl MT resins and hydrogen end-capped polydiphenylsiloxane (PHPS) under Pt catalysis at 150°C for 4h. The effects of the proportion and the vinyl content of phenyl MT resins on the mechanical properties of cured products were investigated. The thermal stability was explored by thermogravimetric analysis. The changes of mechanical properties were also studied before and after irradiation. Phenyl silicone rubber with good performance was obtained when the phenyl MT resin content was 50~60 wt% and the vinyl content was at 5.5~6.6 wt%. The onset temperature of thermal degradation and the center temperature of thermal degradation were 443.7°C and 502°C, respectively. When the radiation dose increased from 0 to 300 KGy, the tensile strength decreased from 4.1MPa to 2.3MPa and the tearing strength decreased from 8.9MPa to 5.1MPa. When the radiation dose continues to increased from 300 to 900 KGy, the tensile strength increased from 2.3MPa to 6.4MPa and the tearing strength increased from 5.1MPa to 6.5MPa. During the process of radiation, the elongation at break had been kept down from 96% to 52%, and the hardness increased from 80A to 90A.


2014 ◽  
Vol 936 ◽  
pp. 39-42
Author(s):  
Qin Hui Chen ◽  
Jin Huo Lin

The polypropylene-graft-cardanol (CAPP) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could improve the inherent defects of PP such as chemical inertness and hydrophobicity. Moreover, the cardanol grafted onto PP could resolve the degradation of PP during the process of reactive extrusion. In this paper, CAPP was prepared in the presence of three different kinds initiator. The compatibilization and the anti-aging performance of cardanol grafted onto PP were studied. Results showed that the initiator dicumyl peroxide (DCP) exhibited the optimum initiated efficiency. Cardanol grafted onto PP was benificial for the composite of bamboo powder and PP.The initiator of DCP caused the degradation of PP chains during the aging processing. After aged for 24 h, the yield strength decreased from 28 MPa to 15 MPa and the elongation at break reduced by 795 %. The CAPP possessed outstanding anti-aging performance owing to the cross-linking and entanglement of the side chains of cardanol grafted onto PP. The yield strength, tensile strength and the elongation at break of CAPP-DCP changed lightly even when it was in long-term irradiation for 480 h.


2020 ◽  
Vol 850 ◽  
pp. 87-93
Author(s):  
Thi Luong Nguyen ◽  
Hoc Thang Nguyen ◽  
Van Khoi Nguyen ◽  
Thi Thu Ha Pham ◽  
Thi Hong Thuy Le ◽  
...  

This article is aimed at evaluating newly synthesized HPMC/BW composite films, applied for preservation of seedless lime fruit. Factors influenced to formation of the films as well as characteristics of HPMC/BW edible composite films were researched and analyzed based on experimental results and previous studies. The HPMC/BW edible composite films were created based on the components included HPMC (5% w/v), Glycerol plasticizer (Gly-2% v/v), BW (5% w/v); Oleic Acid emulsifier (OA-1% v/v). Characteristics of the composite film were evaluated via the analytical techniques known as Sensory, Tensile Strength (TS), Elongation at Break (EB), ThermoGravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Fourier Transform InfraRed (FTIR). HPMC/BW composite films applied in preserving seedless limes. Evaluations of preservation processes were based on effects of characteristics such as Sensory evaluation, Respiratory intensity, Weight loss, Vitamin C content, Total acid of before and after fruits preservation.


2012 ◽  
Vol 562-564 ◽  
pp. 380-384
Author(s):  
Bian Hua Li ◽  
Qi Cheng Liu ◽  
Yan Juan Yu ◽  
Du Ming Gong

The durability of the asphalt is of great significance to its pavement performance, so more and more effort has been addressed on improving the asphalt anti-aging performance. In this work, the effects of antioxidant type and formula on the asphalt anti-aging performance were investigated through various measurements before and after aging process including needle penetration, softening point and ductility. Furthermore, the aging mechanism was analyzed via the FTIR (Fourier Transform Infrared) test. As a result, composite antioxidant can observably improve aging resistance of the asphalt. When the formula is 1.2%B+1.5%C+1.2%D, the needle penetration, ductility, softening point are as follows: 39.4×10-1mm, 148.1cm, 52.1°C. FTIR shows that carbonyl absorption peak reduced. Moreover, composite antioxidant can be more stable improvement of asphalt aging effect due to the cooperativity.


2016 ◽  
Vol 1133 ◽  
pp. 206-210 ◽  
Author(s):  
Arjulizan Rusli ◽  
Nur Farhana Asul Kahar

The use of triacetin as an alternative plasticizer to polyvinyl chloride (PVC) was studied in term of plasticizer efficiency and tensile properties before and after ageing. The efficiency of plasticizers was evaluated based on the glass transition temperature (Tg) and the hardness value of the compounds. The Tg and hardness of all PVC/DEHP/Triacetin compounds are lower than PVC/50DEHP and PVC/50Triacetin compounds indicating synergistic plasticisation effect between both DEHP and Triacetin within the PVC compounds. The low molecular weight and chemical structure of triacetin are believed to contribute to the highest tensile strength, elongation at break and modulus of the PVC/triacetin compared with PVC/DEHP and PVC/DEHP/triacetin compounds. However, the migration ability of the triacetin plasticizer is believed to result in the biggest changes of the tensile properties of PVC compounds plasticized with triacetin before and after ageing.


2009 ◽  
Vol 87-88 ◽  
pp. 110-115 ◽  
Author(s):  
Ze Peng Wang

The basic and dynamic mechanical properties and thrermal conductivity of rubber composites filled with carbon nanotubes (CNTs) and various particle-sized carbon blacks (CB) were investigated. Results indicated that tear strength and modulus at a definite elongation of rubber composites filled with CNTs were enhanced compared to the conventional CB filler. However, tensile strength and elongation at break became lower. Thermal conductivity of rubber composites partly filled with CNTs is higher than those filled with CB. Rubber filled with the combination of CNTs and the bigger CB particles was beneficial to improve wet-resistant performance and roll resistance of elastomer such as tire.


2021 ◽  
Vol 333 ◽  
pp. 13001
Author(s):  
Asep Handaya Saputra ◽  
Tuti Indah Sari ◽  
Dadi R. Maspanger ◽  
Setijo Bismo

DME (Dimethyl Ether) is the future environmental friendly fuel. Some parts of equipment for transporting the DME are using rubber as a hoses or seals. This research is about the using of natural rubber for those applications. The influential part in the manufacture of natural rubber products are fillers. The use of filler depends on what the product will be made. DME nature have high permeability and easy to absorb into a rubber and plastic. In such of that, the rubber or plastic could be damaged and not durable. In order to determine the type of degradation, the number of samples were immersed in liquid DME. The ratio of the loading of carbon black/silica filler in natural rubber was varied. DME causes two types of degradation, namely absorption and extraction. The addition of filler composition can reduce the absorption and extraction, which can cause a reduction in the percentage decrease in the value of the change in mass and a decrease in tensile strength. On the other hand, the addition of filler composition will increase the changes of hardness. The higher filler loading, will increase the crosslink density and lower scorch time. The presence of silica further is to enhance the crosslink density as well as to lower scorch time. Therefore, the presence of silica affect on the decreasing of the swelling level and shrinking. In general, the presence of silica filler in the mixture will be slightly lowering the tensile strength, but not affecting the elongation at break. The presence of silica before and after soaking with DME will increase hardness.


Sign in / Sign up

Export Citation Format

Share Document