scholarly journals Technology of eliminating outburst by downward drilling in highground pressure and serious outburst area

2021 ◽  
Vol 245 ◽  
pp. 01021
Author(s):  
Enbing Yi

The high-drainage roadway construction face of the working face is used to pre-drill the borehole under the tunneling face, and the problem of poor water return in the hole is solved by grouting the surrounding rock cracks in the deep and shallow holes of the drill floor. The “two plugs and one note” sealing method was adopted to ensure that the sealing holes were tight and airtight; the water pipes were blown all the way in the hole, and the single hole, grouping and timed water blowing work targets were realized, and the drilling effect of the downhole drilling was improved. A set of efficient and rapid down-drilling and hole-dissipation management mode has been formed, which has achieved the goal of high-efficiency outburst of coal seams and technical and economic integration in areas with high ground pressure and serious safety and economic benefits.

2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2014 ◽  
Vol 580-583 ◽  
pp. 2554-2557
Author(s):  
Hua Jun Xue ◽  
Jun Chen ◽  
Bo Liu ◽  
Jie Kong ◽  
Zhi Jun Hao

The surrounding rock deformation of pedestrian roadway was serious under the influence of the working face. And it has affected the safety and normal use of roadway. To ensure the long-term stability of the pedestrian roadway surrounding rock and increase the coal recovery rate of working face, the paper studied the position of stopping line of 1203 working face by numerical simulation. The results show that setting 115m wide of security coal pillar between 1203 working face and pedestrian roadway that the area of stress concentration near the working face has less effect on the pedestrian roadway could better control the surrounding rock stability of the pedestrian roadway and meet the need of the long-term normal production use. It narrows the width of security coal pillar, increase the coal resources recovery rate and achieve the better economic benefits.


2021 ◽  
Author(s):  
Luo Shenghu ◽  
tong wang ◽  
Wu Yongping ◽  
Huangfu Jingyu ◽  
Zhao Huatao

Abstract The key to the safe and efficient longwall mining of steeply dipping seams lies in the stability control of the "support-surrounding rock" system. This paper analyzes the difficulty of controlling the stability of the support during the longwall mining process of steeply dipping coal seams in terms of the characteristics of the non-uniform filled-in gob using a combination of physical test, theoretical analysis and field measurements. Considering the floor as an elastic foundation, we built a "support-surrounding rock" mechanical model based on data obtained on "support-surrounding rock" systems in different regions and the laws of support motion under different load conditions. Our findings are summarized as follows. First, depending on the angle of the coal seam, the caving gangue will roll (slide) downward along the incline, resulting in the formation of a non-uniform filling zone in the deep gob in which the lower, middle, and upper sections are filled, half-filled, and empty, respectively. In addition, an inverted triangular hollow surface is formed on the floor of the gob in the middle and upper sections behind the support. Furthermore, as the angle of the coal seam, length of the working face, and mining height increase, the characteristics of the non-uniform filled-in gob are enhanced. Second, we found that, as a result of support by the gangue, the "support-surrounding rock" system is relatively stable in the lower part of the working face while, in the middle and upper sections of the working face, the contact method and loading characteristics of the support are more complicated, making stability control difficult. Third, the magnitude and direction of the load, action point, and mining height all affect the stability of the support to varying degrees, with the tangential load and action position of the roof load having the most significant impacts on the stability of the support. Under loading by the roof, rotation and subsidence of the support inevitably occur, with gradually increasing amplitude and effects on the inter-support and sliding forces. Finally, we found that it is advisable in the process of moving the support to adopt "sliding advance of support" measures and to apply a "down-up" removal order to ensure overall stability. These research results provide reference and guidance of significance to field practice production.


2011 ◽  
Vol 255-260 ◽  
pp. 3735-3739
Author(s):  
Wei Dong Pan ◽  
Xiao Hua Wu ◽  
Yang Li

Based on the big thickness, low stiffiness and other characters of No. 8 coal seam in Huaibei mining area, the moving laws of top coal seam and roof, and distribution law of ground pressure were studied under the fully mechanized top coal caving. The research methods included working resistance observation of hydraulic supports in working face, deformation observation of stope roadways and deeper base point observation in roof and top coal. The results show that, in the thick and soft coal seams, the influence coverage of mining ground pressure in fully mechanized top coal caving face is much wider than that in the working face with general mining technology, but the intensity of pressure is much lower.


2021 ◽  
Vol 248 ◽  
pp. 03031
Author(s):  
Chen Zhengwen

In order to understand and grasp the law of roof pressure on the working face of deep inclined coal seams, the law of support resistance distribution, the law of leading support stress distribution and the law of surrounding rock deformation of the two roadways, the 94101 working face of Zhangshuanglou Coal Mine was taken as the engineering background. Through a combination of field measurement, numerical simulation, theoretical analysis, etc, this paper analyzes the laws of roof migration and rock pressure manifestation in deep inclined coal seams.


2020 ◽  
Vol 12 (3) ◽  
pp. 1197 ◽  
Author(s):  
Zhijun Tian ◽  
Zizheng Zhang ◽  
Min Deng ◽  
Shuai Yan ◽  
Jianbiao Bai

Gob-side entry retained technology is of great significance to develop coal mining industry sustainably, which can improve the coal recovery rate by mining without the coal pillar. However, scholars and researchers pay little attention to the gob-side entry retained with soft roof, floor, and seam in thin coal seams. In this study, the difficulties and key points of surrounding rock control for gob-side entry retained with soft roof, floor, and seam in thin coal seams were firstly proposed. Secondly, the mechanical model of the interaction between the roadside backfill body and the roof for gob-side entry retained with soft roof, floor, and seam in thin coal seams was established, and the relevant parameters were designed. Finally, the above results were verified by the engineering practice of gob-side entry retained technology and the monitoring of mine pressure on the 1103 working face of the Heilong Coal Mine. Moreover, the effect factors of surrounding rock stability for gob-side entry retained with soft roof, floor, and seam in thin coal seams were discussed using the discrete element method. The results could provide guidance for gob-side entry retained with soft roof, floor, and seam in thin coal seams under similar geological conditions.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5759
Author(s):  
Peng Wang ◽  
Nong Zhang ◽  
Jiaguang Kan ◽  
Bin Wang ◽  
Xingliang Xu

A floor rock roadway under an oblique straddle working face is a typical dynamic pressure roadway. Under the complex disturbance of excavation engineering works, the roadway often undergoes stress concentration and severe deformation and damage. To solve the problem of surrounding rock stability control for this roadway type, this study considered the East Forth main transport roadway in the floor strata of the 1762(3) working face of the Pansan coal mine. In situ ground pressure monitoring and numerical simulation calculation using the FLAC2D software were carried out. The influence laws of the surrounding rock lithology, the vertical and horizontal distance between the roadway and overlying working face, the positional relationship between the roadway and the overlying working face, and the support form and strength of the rock surrounding an oblique straddle roadway were obtained. Within the range of mining influence, the properties of the rock surrounding the roof and floor were very different, and the deformation of the rock surrounding the two sides exhibited regional difference. The influence range of the mining working face on the rock floor of the roadway was approximately 30–40 m, and that of horizontal mining was approximately 50–60 m. The mining influence on the rock surrounding the side roadway of the working face is large, but the mining influence on the roadway below is small. Using FLAC2D, the stress and displacement characteristics of the rock surrounding the obliquely straddle roadway were compared and analyzed when the bolt support, combined bolt and shed support, and bolt–shotcreting–grouting support were adopted, the proposed support scheme of bolting and shotcreting was successfully applied. The deformation of the rock surrounding the roadway was satisfactorily controlled, and the results were useful as a reference for similar roadway maintenance projects.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wen Zhai ◽  
Yachao Guo ◽  
Xiaochuan Ma ◽  
Nailv Li ◽  
Peng Zhang ◽  
...  

With the increase of mining depth in underground engineering, deep ground pressure has an extremely unfavorable impact on safety production and the economic benefits of coal mines and the control of the roadway stability in deep mines are gradually highlighted. In this study, the working face 14203 of the Zaoquan coal mine was taken as the engineering background, the deformation mechanism of surrounding rock in the deep-buried high-stress roadway was analyzed, and the hydraulic fracturing pressure relief technology in the advanced roadway was proposed for surrounding rock control. Finally, the numerical simulation and field tests were used to validate the comprehensive effect of the proposed technology. Without damaging the roadway stability in the working face, the hydraulic fracturing pressure relief technology can optimize the stress environment and stability of the roadway through the artificial control of the roof fracture position. The numerical simulation shows that under the action of hydraulic fracturing, the cutting slot is formed, the deformation and failure mode of the roof are changed, the stress of surrounding rock is reduced, and the development of the plastic zone of surrounding rock is limited. As a result, the stability of surrounding rock in the roadway is effectively protected. The field test shows that after the adoption of hydraulic fracturing pressure relief technology, the roof subsidence, floor separation, bolt stress, and cable stress decrease, and the deformation of surrounding rock is reduced significantly. Therefore, hydraulic fracturing pressure relief technology is verified as an effective method to control the large deformation of the surrounding rock in the deep-buried roadway.


2014 ◽  
Vol 945-949 ◽  
pp. 1163-1168 ◽  
Author(s):  
Rui Xi Zhang ◽  
Yu Kai Lv ◽  
Cong Jiang

Traditional trellis support was mainly used in deep mining roadway of Kailuan group. With the increase of mining depth, section of roadway and deformation of surrounding rock also increased gradually. As a passive support ways of roadway, trellis support had been unable to meet the requirements of high yield and high efficiency comprehensive mechanized mining. Therefore, anchor bolt supportis in urgent need to turn passive support into active support and to ensure the safety and the stability of surrounding rock of roadway, meanwhile, the cost saving and boosting yield was made sure. This paper is based on the physical and mechanical parameters of coal seam roof and floor of working face 1357w, numerical simulation method was took, and the parameters of anchor bolt support suitable for the roadway with working face were also studied. The result of study could provide theoretical basis for later projects.


Sign in / Sign up

Export Citation Format

Share Document