scholarly journals The forces acting on the teeth of catching machine

2021 ◽  
Vol 274 ◽  
pp. 03009
Author(s):  
Rustam Ergashev ◽  
Fakhriddin Bekchanov ◽  
Jaloliddin Rashidov ◽  
Boybek Kholbutaev

Republic of Uzbekistan, pumping stations are used in very difficult conditions. The presence of various particles and effluents in the water has a negative effect on the operating modes of the pumping equipment. Special grilles are installed to prevent the catching devices from entering the advance chamber of the pump station. The shape and length of the device covers are of great importance so that they are caught in front of the grilles and completely cover the accumulated debris. In the article, the laws of mechanics were used to determine the shape and size of the working device of the device for cleaning the effluent flowing into the pump station as water and accumulated in front of the grids. In doing so, the condition of ensuring complete removal of the leaks covered by the device was taken into account. It was argued that the angle γ between the working surfaces and velocities of the covers should be less than 90-φ over its entire working surface in order to fully cover the device shafts. It was found that when the working surface of the device is flat, the time of interaction with the catching device pieces is minimal. Studies and literature have shown that the angle of friction on the working surfaces of the device covers should be φ=20°, the angle between the working surface of the device cover and the rotational speed γ=70°.

2020 ◽  
Vol 164 ◽  
pp. 01002
Author(s):  
Svetlana Maksimova ◽  
Anna Shkileva ◽  
Ekaterina Verevkina

The main goal of this study is evaluation of reconstruction options for water pumping stations, regarding various factors (equipment purchase cost, maintenance, energy consumption). The search for the most profitable solution was carried out using the life cycle cost methodology for the urban water supply system’s first lift pump station. An analysis of the operating modes of the pumping station was carried out using curves of pumps and system. It was found that the option with a higher purchase price has the best technological indicators, including energy consumption. The expediency of the complete replacement of pumping equipment is confirmed by an analysis of life cycle costs.


2021 ◽  
pp. 111-116
Author(s):  
YU. V. КОRCHEVSKAYA ◽  
◽  
I. A. TROTSENKO ◽  
E. E. NAZARKIN

Since reducing energy consumption is a priority for an enterprise, economic effi ciency in general is directly related to the use of pumping equipment. The demand for electricity for pumping equipment will depend on various factors: the operating modes of pumping stations and installations, the equipment used measures to reduce the cost of electricity consumed, etc. The current practice indicates extremely inefficient operation of pumping equipment. Currently, a large number of pumping stations of water supply and sanitation systems operate in an uneconomical mode. Very often, this is due to incorrect selection of pumping equipment, outdated pumping equipment, the operation of pumps in non- calculation mode. In addition, pumping equipment has been installed in many industries since the establishment of production. Such equipment is morally and technically outdated. Now,technological progress allows us to use more efficient equipment and materials that allow us to reduce energy consumption. The article presents an analysis of the energy consumption of a pumping station of technical water supply on the example of JSC «Omsk Kauchuk», a variant of modernization is proposed in order to reduce the consumption of electricity by pumping equipment. The need to modernize the pumping station of technical water supply is associated with a significant service life and high –energy consumption of pumping equipment. Two pump brands were selected and a comparative analysis was carried out. Based on calculations of energy consumption and technological characteristics, the most profitable and optimal version of the D6300-80-2b pump was chosen, since the pump performance is greater and the power consumption is less than that of the JETEX DS600-750 pump, as well as reducing the wear rate of operating elements, improving the pump’s suction capacity


2020 ◽  
Vol 129 (4) ◽  
pp. 46-50
Author(s):  
V. V. Shalai ◽  
◽  
M. O. Myznikov ◽  
M. I. Kononova ◽  
◽  
...  

Improving the efficiency of operation of main pumping units is one of the pressing issues of modern practice of operating oil pipelines. The change in pumping capacity leads to a change in the operating modes of pumping equipment. This article proposes a methodology for assessing and improving the efficiency of the operation of oil pipelines based on the rational use of existing pumping equipment of pumping stations.


2021 ◽  
pp. 117-124
Author(s):  
N. K. GUDKOVA ◽  
◽  
T. L. GORBUNOVA ◽  
N. I. МАTOVA

Since reducing energy consumption is a priority for an enterprise, economic effi ciency in general is directly related to the use of pumping equipment. The demand for electricity for pumping equipment will depend on various factors: the operating modes of pumping stations and installations, the equipment used measures to reduce the cost of electricity consumed, etc. The current practice indicates extremely inefficient operation of pumping equipment. Currently, a large number of pumping stations of water supply and sanitation systems operate in an uneconomical mode. Very often, this is due to incorrect selection of pumping equipment, outdated pumping equipment, the operation of pumps in non- calculation mode. In addition, pumping equipment has been installed in many industries since the establishment of production. Such equipment is morally and technically outdated. Now,technological progress allows us to use more efficient equipment and materials that allow us to reduce energy consumption. The article presents an analysis of the energy consumption of a pumping station of technical water supply on the example of JSC «Omsk Kauchuk», a variant of modernization is proposed in order to reduce the consumption of electricity by pumping equipment. The need to modernize the pumping station of technical water supply is associated with a significant service life and high –energy consumption of pumping equipment. Two pump brands were selected and a comparative analysis was carried out. Based on calculations of energy consumption and technological characteristics, the most profitable and optimal version of the D6300-80-2b pump was chosen, since the pump performance is greater and the power consumption is less than that of the JETEX DS600-750 pump, as well as reducing the wear rate of operating elements, improving the pump’s suction capacity


Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.


Author(s):  
Sergei, Rybel’ ◽  
V. Kuninin ◽  
S. Gerasimov ◽  
A. Bakushin

Приведен опыт применения частотно-регулируемых электроприводов на насосных станциях ООО Водоканал г. Новокузнецка. Приводятся преимущества и недостатки данного технического устройства. Показано, что в настоящее время использование частотно-регулируемых приводов позволило снизить потребление электроэнергии более чем на 20, уменьшить затраты на ремонт и обслуживание, повысить срок службы электродвигателей, уменьшить величину пускового тока, снизить утечки воды и нагрузку на насосное оборудование и трубопроводную арматуру. Применение частотно-регулируемых электроприводов оправдало себя и в тех случаях, когда требуется регулирование параметров для обеспечения технологии (регулирование скорости, производительности и т. д.), приведение параметров оборудования к требуемым значениям без его замены (в расчете на увеличение загрузки оборудования до номинала в последующий период), компенсация суточной неравномерности потребления воды.The experience of using variable speed drives at the pumping stations operated by Vodokanal LLC in Novokuznetsk is presented. The advantages and disadvantages of this technical device are specified. It is demonstrated that currently, the use of variable speed drives provides for reducing the energy consumption by more than 20, reducing the repair and maintenance costs for improving the service life of electric motors for reducing inrush current, water leaks and the load on the pumping equipment and pipeline valving. The use of variable speed drives has paid off even in case where adjusting the parameters to ensure the technology (velocity, performance, etc.) bringing the equipment parameters to the required values without replacing it (in order to increase the equipment load to the nominal value for the subsequent period) compensating for daily irregularities in water consumption are required.


2021 ◽  
Vol 9 (1) ◽  
pp. 77-82
Author(s):  
Epiwardi ◽  
Ruwahyoto ◽  
Heri sungkowo

The low power factor in the electricity installation of Sumber Wendit 3 water pumping stations causes a bill of excess reactive energy usage or kVARh, so that the cost of using electricity becomes higher. The excess use of reactive energy can be compensated by additional investment in installing capacitor banks in the main distribution panel (MDP) Sumber Wendit 3 water pump station. Based on the data and problems, it is planned to install capacitor banks that meet the standards with a target of 0.90 and 0.95 lagging. From the results of the planning, we need 150 kVAR and 250 kVAR capacitors, with an investment value of Rp. 94,983,790 and - Rp. 120,781,210. After an investment feasibility test using the Payback Period (PP) method, it is known that for a 150 kVAR bank capacitors, the investment return is technically 2.88 months and economically is 4.01 and 3.17 months. For 250 kVAR bank capacitors, the return on investment is technically 3.66 months and economically 5.1 and 4.03 months. When compared with the economic life of the investment is 10 years, the investment of the bank capacitor installation project is very profitable and feasible to carry out


Author(s):  
Vladimir Aleksandrovich Khokhlov ◽  
Aleksandr Vasilevich Khokhlov ◽  
Janna Olegovna Titova

This chapter describes the methods and devices of energy-saving regulation for irrigative pumping stations based on principles of power loss reduction in pressure pipelines. These concepts are scientifically substantiated and developed. Protection of the main power equipment and pipelines of pumping stations from water at transients are developed and devices for their implementation are designed. The use of the research results will make it possible to plan the electric energy consumption, to make an estimation of power-hydraulic equipment operation quality and safety, to find the sources of energy loss and ways to reduce working at the pumping stations in the rural branches of economy.


2018 ◽  
Vol 194 ◽  
pp. 01050 ◽  
Author(s):  
Amer Saloum ◽  
Vyacheslav I. Maksimov

The purpose of this research is to study the effect of water temperature change in the reservoir on water heat pump performance. An experimental analyse is done on the heat pump station which depends on water as a heat source. The experimental results confirm that the ice formation has a negative effect on the heat exchange efficiency, and the increase in water source temperature slow down the ice formation rate which causes an appositive effect on the system performance.


2020 ◽  
Vol 71 (6) ◽  
pp. 571
Author(s):  
B. O. David ◽  
M. Lake ◽  
M. K. Pine ◽  
J. Smith ◽  
J. A. T. Boubée

Fish mortality through floodplain pumping stations is a recognised global issue, but few studies have quantified the degree of mortality that occurs during pumping. We investigated the potential of passive acoustic monitoring (PAM) as a tool to record sounds made by fish and their likely mortality as they passed through pumps during downstream migration. The acoustic properties made by freshly killed eels that were fed through an existing pump station were compared to those made by goldfish (Carassius auratus). Processing and analysis of acoustic data enabled the development of an ‘eel-specific’ algorithm for detecting eels passing through the pumping station. The duration of sound and filtered intensity were useful characteristics enabling reliable separation of the two fish species. The algorithm was then applied retrospectively to soundscape recordings obtained during a typical eel migration period at the test site. Although the tool is unlikely to be able to differentiate the sound of goldfish from ‘other’ potential sounds of short duration (e.g. sticks), differentiating eels from other sounds was demonstrated. We conclude that this tool has considerable potential for improving the understanding of the timing of eel migrations and likely mortality through pumping stations. The tool may also be used to inform the development of both remote and manual pump management options for reducing pump-related eel mortality.


Sign in / Sign up

Export Citation Format

Share Document