A < 0.1 µs RESPONSE TIME CARBON FILM BOLOMETER DETECTION SYSTEM

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-1188-C6-1190
Author(s):  
Y. Korczynskyj
2021 ◽  
pp. 1-13
Author(s):  
Dayong Guo ◽  
Qing Hu

Aiming at the problems of low precision, slow data transmission speed and long response time of silk quality and temperature control in tobacco intelligent production line, a multi-index testing system is designed. According to the characteristics of PROFIBUS fieldbus technology, combined with PROFIBUS transmission technology, a factory level information network is formed with PROFIBUS-DP as the exchange mode. Based on the PROFIBUS technology, the dual redundancy structure of control ring network and management information ring network is adopted, and the whole network architecture is constructed by logic layering. From the point of view of building enterprise MES system, it locates real-time production monitoring, production task receiving and production line related data collection, integrates equipment control layer, centralized monitoring layer and production management layer, and designs system function structure. The functional structure of the system, and the establishment of a number of data tables, to achieve a tobacco intelligent production line silk quality detection system design. Experimental results show that this method can effectively speed up the data transmission speed and shorten the system response time.


Author(s):  
Edouard Bahous ◽  
Ram Srinivasan ◽  
Priyank Saxena ◽  
John Bowen

UV sensors were tested to evaluate the response and reliability as a flameout detection system to reduce system level risks. In this study, UV sensors from two manufacturers were tested on high pressure experimental rigs and on a 15MW gas turbine engine with annular diffusion flame combustion system. Tests were run to investigate the effect of fuel composition, engine load, and sensor circumferential position. The effect of each variable on sensor signal strength and response time is presented in this paper. The response time of the sensor is evaluated against the rate of change of combustor pressure and the time for fuel-air mixture to reach lean extinction limit in the primary zone. Results show that the UV sensor response is not affected by engine load, circumferential location of the sensors, or fuel composition down to Wobbe index of 18.7 MJ/Sm3. At lower Wobbe indices, the signal strength decreased significantly. This result has been attributed to the movement of flame location away from the line of sight of the sensor. Furthermore, it was found that the UV sensor responded before the bulk average reactant mixture reached lean blow out fuel-air ratios. When compared to the baseline detection system the UV sensor performs faster at low load conditions (800 milliseconds) but slower at full load conditions (400 milliseconds). Experimental rig testing led to similar conclusions for sensor response time and signal strength. Future testing of UV sensors on hydrogen blends is planned.


2019 ◽  
Vol 7 (4) ◽  
pp. 162-176
Author(s):  
Rajendran N. ◽  
Jawahar P.K. ◽  
Priyadarshini R.

Purpose The purpose of this paper is to apply security policies over the mobile ad hoc networks. A mobile ad hoc network refers to infrastructure-less, persistently self-designing systems; likewise, there is a noteworthy innovation that supplies virtual equipment and programming assets according to the requirement of mobile ad hoc network. Design/methodology/approach It faces different execution and effectiveness-based difficulties. The major challenge is the compromise of performance because of unavailable resources with respect to the MANET. In order to increase the MANET environment’s performance, various techniques are employed for routing and security purpose. An efficient security module requires a quality-of-service (QoS)-based security policy. It performs the task of routing and of the mobile nodes, and it also reduces the routing cost by finding the most trusted node. Findings The experimental results specify that QoS-based security policy effectively minimizes the cost, response time as well as the mobile makespan (routing cost and response time) of an application with respect to other existing approaches. Research limitations/implications In this paper, the authors proposed an enhancement of Cross Centric Intrusion Detection System named as PIHNSPRA Routing Algorithm (PIHNSPRA). Practical implications It maps the security with the secure IDS communication and distributes the packets among different destinations, based on priority. This calculation is proposed for the purpose of routing and security by considering greatest throughput with least routing cost and reaction time. Social implications When the concept is applied to practical applications. Quality of Service introduced in the proposed research reduces the cost of routing and improves the throughput. Originality/value The proposed calculation is tested by NS2 simulator and the outcomes showed that the execution of the calculation is superior to other conventional algorithms.


2019 ◽  
Vol 186 (2-3) ◽  
pp. 406-412
Author(s):  
Petra Vyletělová ◽  
Aleš Froňka

Abstract The extraction of dissolved radon from water to gas is the most common way to measure radon concentration in water continuously. The response delay of continuous radon-in-water detection system (continuous monitor + equilibrator) is influenced by the response time of the continuous monitor and a rate of an establishment of equilibrium in the equilibrator (exchanger unit). Two types of equilibrators were used in performed experiments to compare the response time of various detection systems—RAD AQUA that uses water spraying and equilibrator with ACCUREL® PP membrane that enables radon diffusion. Each of these was connected to the continuous monitor RAD7 or RM-3. The response delay after turning on the water flow through the equilibrator was determined. The fastest detection system was RAD7 + RAD AQUA that was subsequently tested during the insitu measurement of thermal water in the healing spa and water sources near Cheb and České Budějovice.


1980 ◽  
Vol 102 (4) ◽  
pp. 903-911 ◽  
Author(s):  
G. R. Ludwig ◽  
J. P. Nenni

An improved version of a rotating stall control system has been tested successfully on a J-85-B turbojet engine. Past tests had pointed out the desirability of increasing the response speed of the control. In this study, the installation of the stall control on the J-85 was modified so as to decrease the response time of the control by a factor of ten over that attained in the past tests. The modified control was tested to see if the decreased response time improved the ability to clear rotating stall once it has started, and also to see if rotating stall could be anticipated and prevented by proper selection of the variables in the stall control detection system. The performance of the stall control was tested by closing the bleed doors on the engine until rotating stall occurred or until the control anticipated stall and held the bleed doors open. The tests showed that the control is capable of anticipating stall before it occurs and keeping the engine completely clear of stall at speeds up to 80 percent of design speed. No tests were performed above 80 percent of design speed because opening the bleed doors at such speeds might aggravate the stall rather than clear it.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammad Imam Syaiffullah ◽  
Sumardi Sadi ◽  
Roni Suyono

ABSTRACT Liquefied Petroleum Gas (LPG) leak detection system is a precautionary measure for hazards such as a gas cylinder explosion. There have been many incidents of building explosions because the occupants were negligent in anticipating the gas leak. Therefore, this research has made a gas leak detection system that is integrated with the IoT concept using Google Firebase. This tool aims to anticipate the dangers of gas leaks that occur in a room in a building or house. This tool is wrapped in an acrylic box measuring 10 x 11 x 8 cm. By using NodeMCU ESP8266 as the main control, the gas sensor uses MQ - 2 as input, LED, LCD, and buzzer as output. This tool is also equipped with IoT (Internet of Things) so that the room where this tool is installed when a gas leak occurs can provide notifications remotely using an application on a smartphone. From this tool, test results have been obtained for the ideal distance from the gas regulator to the sensor which is 1 cm away by producing a sensor response time of 0.90 seconds and also getting the response time of the tool in sending notifications to the smartphone application of 1.79 seconds. Keywords: LPG, Firebase, IoT, NodeMCU, Gas Detection 


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Saheed Akande ◽  
Adedotun Adetunla ◽  
Tosin Olanrewaju ◽  
Adeyinka Adeoye

The synergy of vibration and gas sensors with unmanned aerial vehicles for a low-response-time Leakage Detection System (LDS) is explored in this work. Several pipeline accidents have occurred, most of which were triggered by untimely detection of pipe leakages in systems conveying oil and gas in many developing countries. The consequences of this include human casualties, environmental degradation, economic loss, and loss of resources. To limit the damages caused by inevitable leakages, a low-time-response system for leakage detection is required. Response time derived from the LDS is compared to the typical response time obtained from an existing system to determine the efficiency of the developed system. A comparative analysis of the response time of the designed LDS and existing systems reveals that the designed LDS response time is 1146.7% faster and having a pictorial view of the localized area of interest would go a long way to preventing unnecessary mobilization for site visits and eradicating the costly effect of false alarms.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 327 ◽  
Author(s):  
Xi Zhang ◽  
Zezhou Lin ◽  
Da Peng ◽  
Dongfeng Diao

We propose that bias-modulated graphene-nanocrystallites (GNs) grown vertically can enhance the photoelectric property of carbon film coated on n-Si substrate. In this work, GN-embedded carbon (GNEC) films were deposited by the electron cyclotron resonance (ECR) sputtering technique. Under a reverse diode bias which lifts the Dirac point of GNs to a higher value, the GNEC film/n-Si device achieved a high photocurrent responsivity of 0.35 A/W. The bias-modulated position of the Dirac point resulted in a tunable ON/OFF ratio and a variable spectral response peak. Moreover, due to the standing structured GNs keeping the transport channels, a response time of 2.2 μs was achieved. This work sheds light on the bias-control wavelength-sensitive photodetector applications.


2016 ◽  
Vol 33 (12) ◽  
pp. 2569-2583 ◽  
Author(s):  
Matthew Hayman ◽  
Katie J. McMenamin ◽  
Jørgen B. Jensen

AbstractTwo-dimensional optical array probes are commonly used for imaging raindrops and ice particles on research aircraft. The ability of these probes to accurately measure particle concentration and size partly depends on the response characteristics of the detection system. If the response characteristics are too slow, then small particles are less likely to be detected and the associated effective sample volume decreases. In an effort to better understand the sample volumes of optical array probes at the National Center for Atmospheric Research, the temporal response of the Fast-2D optical array probe detector board from optical input on the detector to digitization was characterized. The analysis suggests that the board electronics have a response time constant consistently near 50 ns. However, there is also a slow decay term that conforms to a decay rate. The amplitude of this slow function can impact the probe response, varying the minimum detectable pulse width between 60 and 150 ns. Also, the amplitude of the slow function is largely dictated by the illumination angle of incidence. The effects of the response time characteristics are analyzed using a simulator for a 2D cloud (2D-C) probe with 25-μm photodiode spacing. The results show the greatest sensitivity to response time characteristics when particles are smaller than 150 μm, where 10% uncertainty in the slow fraction is likely to produce sample volume uncertainties near 10%. Ignoring response time effects may bias sample volume estimates in the small size regime by as much as 25%.


Sign in / Sign up

Export Citation Format

Share Document