scholarly journals Some multiple flow direction algorithms for overland flow on general meshes

2020 ◽  
Vol 54 (6) ◽  
pp. 1917-1949
Author(s):  
Julien Coatléven

After recalling the most classical multiple flow direction algorithms (MFD), we establish their equivalence with a well chosen discretization of Manning–Strickler models for water flow. From this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming meshes. We also derive a convergence theory for MFD algorithms based on the Manning–Strickler models. Numerical experiments illustrate the good behavior of the method even on distorted meshes.

2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


2021 ◽  
Author(s):  
Guoqiang Peng ◽  
Zhuo Zhang ◽  
Tian Zhang ◽  
Zhiyao Song ◽  
Arif Masrur

Abstract Urban pluvial flash floods have become a matter of widespread concern, as they severely impact people’s lives in urban areas. Hydrological and hydraulic models have been widely used for urban flood management and urban planning. Traditionally, to reduce the complexity of urban flood modelling and simulations, simplification or generalization methods have been used; for example, some models focus on the simulation of overland water flow, and some models focus on the simulation of the water flow in sewer systems. However, the water flow of urban floods includes both overland flow and sewer system flow. The overland flow processes are impacted by many different geographical features in what is an extremely spatially heterogeneous environment. Therefore, this article is based on two widely used models (SWMM and ANUGA) that are coupled to develop a bi-directional method of simulating water flow processes in urban areas. The open source overland flow model uses the unstructured triangular as the spatial discretization scheme. The unstructured triangular-based hydraulic model can be better used to capture the spatial heterogeneity of the urban surfaces. So, the unstructured triangular-based model is an essential condition for heterogeneous feature-based urban flood simulation. The experiments indicate that the proposed coupled model in this article can accurately depict surface waterlogged areas and that the heterogeneous feature-based urban flood model can be used to determine different types of urban flow processes.


2011 ◽  
Vol 356-360 ◽  
pp. 1733-1738
Author(s):  
Fang He ◽  
Aya Obara ◽  
Shi Long Wang ◽  
Li Guo Wang

The vertical and horizontal distribution of NPEOn and their metabolites of NP and NPEnC in the Upper Nansi Lake, North China were investigated using LC-MS and LC-MS/MS methods, sampling at three sites (St.1, St.2 and St.3) along the water flow direction. The total content of NPEOn (n=1–15) bound onto the sediment of this lake changed in the range of 60.7–631.5 μg/kg-dry with the horizontal flow direction and the vertical direction of the sediment cores with sediment thickness up to 35 cm. Compared to the presence levels of all detected NPEOn species, the content of NP was much higher, falling in 26.5–1,998.4 μg/kg-dry. A general increasing trend of the NP content along the water flow direction of this lake was revealed. NPEnC showed a roughly increasing trend from the upstream to the downstream, with the total concentrations being obviously lower than NPEOn and NP and falling in 2.13–23.1 μg/kg-dry. The short chain NPEOn dominant in NPEO mixtures in these sedimentary cores indicated that this lake received some effluents from STPs, and the sewage treatment ratio is relatively low in this area. Furthermore, the computed magnitudes of NPEO 1-2/NPEO1-15, NP/NPEO 1-15 and NPEC 1-10/NPEO 1-15 suggested that the non-oxidative hydrolytic transformation seemed to be a major process occurring within the sediment phase of Nansi Lake, while the oxidative hydrolytic transformation pathway was probably less involved.


Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


2002 ◽  
Vol 124 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Takaaki Sakai ◽  
Masaki Morishita ◽  
Koji Iwata ◽  
Seiji Kitamura

Experimental validation of the design guideline to prevent the failure of a thermometer well by vortex-induced vibration is presented, clarifying the effect of structure damping on displacement amplitudes of a cantilever cylinder. The available experimental data in piping are limited to those with small damping in water flow, because of the difficulty in increasing structure damping of the cantilever cylinders in experiments. In the present experiment, high-viscosity oil within cylinders is used to control their structure damping. Resulting values of reduced damping Cn are 0.49, 0.96, 1.23, 1.98, and 2.22. The tip displacements of the cylinder induced by vortex vibration were measured in the range of reduced velocity Vr from 0.7 to 5 (Reynolds number is 7.8×104 at Vr=1). Cylinders with reduced damping 0.49 and 0.96 showed vortex-induced vibration in the flow direction in the Vr>1 region. However, in cases of reduced damping of 1.23, 1.98, and 2.22, the vibration was suppressed to less than 1 percent diameter. It is confirmed that the criteria of “Vr<3.3 and Cn>1.2” for the prevention of vortex-induced vibration is reasonably applicable to a cantilever cylinder in a water flow pipe.


Author(s):  
Gerd Schmid ◽  
Chien-Yeh Hsu ◽  
Yu-Ting Chen ◽  
Tai-Her Yang ◽  
Sih-Li Chen

This paper investigates the cooling performance of a shallow geothermal energy method in relation to the cooling system of a 75 kVA oil-immersed transformer. A thermal analysis of the complete system is presented and then validated with experimental data. The cooling performance of the shallow geothermal cooling method is indicated by its cooling capacity and average oil temperature. The results of this study show that the average oil temperature can be reduced by nearly 30 °C with the aid of an 8 m deep U-pipe borehole heat exchanger, thereby making it possible to increase the capacity of the transformer. By increasing the water flow rate from 6 L/m to 15 L/m, the average oil temperature could be lowered by 3 °C. In addition, the effects of changing the circulating water flow direction and the activation time of the shallow geothermal cooling system were investigated. The results of the thermal analysis are consistent with the experimental data, with relative errors below 8%. The results of the study confirm that a larger temperature difference between the cooling water and the transformer oil at the inlet of the heat exchanger can increase the overall heat transfer rate and enhance the cooling performance of the shallow geothermal cooling system.


2003 ◽  
Vol 20 (7) ◽  
pp. 1060-1068 ◽  
Author(s):  
Igor Shulman ◽  
Steven H. D. Haddock ◽  
Dennis J. McGillicuddy ◽  
Jeffrey D. Paduan ◽  
W. Paul Bissett

Abstract Bioluminescence (BL) predictability experiments (predictions of the intensity, depth, and distance offshore of the BL maximum) were conducted using an advective–diffusive tracer model with velocities and diffusivities from a fine-resolution model of the Monterey Bay, California, area. For tracer initialization, observations were assimilated into the tracer model while velocities and diffusivities were taken from the hydrodynamic model and kept unchanged during the initialization process. This dynamic initialization procedure provides an equilibrium tracer distribution that is balanced with the velocity and diffusivity fields from the hydrodynamic model. This equilibrium BL distribution was used as the initial BL field for 3 days of prognostic calculations. Two cross-shore surveys of bioluminescence data conducted at two locations (north of the bay and inside the bay) were used in four numerical experiments designed to estimate the limits of bioluminescence predictions by tracers. The cross-shore sections extended to around 25 km offshore, they were around 30 m deep, and on average they were approximately 35 km apart from each other. Bioluminescence predictability experiments demonstrated a strong utility of the tracer model (combined with limited bioluminescence observations and with the output from a circulation model) in predicting (over a 72-h period and over 25–35-km distances) the location and intensity of the BL maximum. Analysis of the model velocity fields and observed and model-predicted bioluminesence fields shows that the BL maximum is located in the frontal area representing a strong reversal of flow direction.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 47-55 ◽  
Author(s):  
Alireza Arabani ◽  
Human Hajikandi

The performance of vertical triple plates as a new countermeasure in control of local scour around a cylindrical model pier is studied. Two ones of the plates are attached to the side wall one of the pier at one pier diameter distance, extending toward upstream distance and the third one is located in the middle, attached to the pier nose. All the three plates are parallel to flow direction. Experiments are conducted for five different depths of flow and two different lengths of the lateral plates, namely 8 and 14 cm. all the runs are performed under the clear water flow over uniform sediment. The results showed a maximum efficiency of 76% in scour reduction for 8 cm long side plates and 85% for 14 cm long ones.it is also found that the proposed setup act simultaneously as both the bed armoring and flow altering countermeasure.


2020 ◽  
Author(s):  
◽  
Zhentao Wang

Wetlands provide many benefits for humans and the natural environment, but land use changes have reduced their number and areal extent. Interest has grown in examining surface water distribution both spatially and temporally, which help to determine those locations for which there is the greatest priority for wetland preservation or mitigation. This research first proposes a methodology to support that examination through the application of open channel hydraulics principles to flow over a landscape. The methodology, implemented through a Python script, automatically extracts landscape characteristics from a DEM and calculates hydraulic parameters. The parameters are used to determine water surface profiles using the Modified Euler's method. Multiple tests show that the script accurately produces profiles of flow between wetlands over a landscape. Such determinations are the first step in understanding where water will exist on the surface and where there may be infiltration to support wetland functions. Furthermore, a water balance methodology (where water will exist, how much will be there and for what period of time) is developed and demonstrated that focuses on small depressions, as locations where conservation efforts to create or regenerate wetlands may be achievable. Integral to this analysis is a detailed treatment of depressions in the landscape. Utilizing a digital elevation model, the methodology incorporates a cell-by-cell analysis to appropriately capture small-scale processes. Instead of treating these vital depressions as errors or being insignificant to the water balance calculations, they are retained. Flow direction is dynamically determined by the land surface and water characteristics. With potentially shallow flow in depressions, the use of Manning's equation incorporates stratified flow where differing values of Manning's n describe flow through and above vegetation. This real-time overland runoff model based on a short time step is implemented through a Python code using ArcGIS. Exercises on an artificial DEM with simulated precipitation demonstrate the ability of the model to accurately represent hydraulics principles. Simulations of two field sites over a period of a year, and incorporating precipitation, infiltration and evapotranspiration, demonstrate the ability to track water surface locations and extents with an accuracy necessary for decision making. Additionally, this research optimizes the Green Ampt infiltration model which allows for the calculation of infiltration rates with unsteady rainfall and then couples this Modified Green Ampt (MGA) model with a previously developed Dynamic Flow Direction (DFD) model to simulate overland flow. To test the accuracy of the improvements, results show shorter times to ponding, smaller total infiltration at the time of ponding and larger total infiltration with this Modified Green Ampt (MGA) model as compared with the results with a Traditional Green Ampt (TGA) model. Additionally, coupled with the DFD model, the MGA model takes surface water movement into consideration. The total water volume on the landscape with MGA is less than predicted by the TGA. Additionally, the inundation area is deeper than 0.05 m with MGA and is also smaller than the result with the TGA.


Sign in / Sign up

Export Citation Format

Share Document