scholarly journals Influence of flow conditions and foam parameters on pressure drop and heat transfer in flow of fluids through channels filled with metal foams

2018 ◽  
Vol 240 ◽  
pp. 03005
Author(s):  
Roman Dyga ◽  
Małgorzata Płaczek ◽  
Stanisław Witczak

This paper reports the results of research into air, water and oil flow through pipes filled with open-cell metal foams, which form a material with a considerable potential for application in the design of process equipment. This study applied three metal foams with various geometrical parameters. The objective of the experiments involved the measurement of pressure drop within a relatively large range of the variability of the flow conditions. On the basis of data from the literature and analysis of the results of experiments, an assessment was undertaken concerned with the influence of the geometrical parameters of the foams as well as velocities and fluid properties on the flow regime and pressure drop. The results demonstrate that the theory concerned with the fluid flow through porous media has a limited application with regard to metal foams due to the considerable turbulence of the flow through such foams. If flow occurs in other conditions than laminar regime, the permeability of metal foams is relative not only to the geometrical structure of the foams but also depends on the properties and velocity of the fluid. The present study demonstrated that the assessment of the flow regime can apply the modified Reynolds number in which the characteristics dimension is defined on the basis of the parameters accounting for the geometrical foam structure. Three flow regimes were distinguished – laminar flow, transient Forchheimer and transient Froud flow. The ranges corresponding to the occurrence of the particular flow regimes were subsequently determined.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2419
Author(s):  
Roman Dyga ◽  
Sebastian Brol

This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and porosities ranging from 29.9% to 94.3% were used. Air, water and oil were pumped through the foams. The tests covered laminar, transitional and turbulent flow. We demonstrated that the Reynolds number, in which the hydraulic dimension should be defined based on foam porosity and pore diameter de = ϕdp/(1 − ϕ), can be used as a flow regime assessment criterion. It has been found that fluid pressure drops when flowing through metal foams significantly depends on the cell size and porosity of the foam, as well as the shape of the foam skeleton. The flow patterns had a significant influence on the pressure drop. Among other things, we observed a smaller pressure drop when plug flow changed to stratified flow. We developed a model to describe pressure drop in flow through metal foams. As per the proposed methodology, pressure drop in single-phase flow should be determined based on the friction factor, taking into account the geometrical parameters of the foams. We propose to calculate pressure drop in gas–liquid flow as the sum of pressure drops in gas and liquid pressure drop corrected by the drop amplification factor.


1960 ◽  
Vol 64 (594) ◽  
pp. 359-362 ◽  
Author(s):  
P. G. Morgan

In many cases of the flow through porous screens, one may consider it to be made up of a number of jets passing through the openings of the screen. These jets are separated by a series of wakes behind the solid parts of the screen. The majority of investigations on the flow through such screens have been concerned with the measurement of pressure drop and its variation with different flow conditions; it has been assumed that the pressure is discontinuous at the screen itself and that the pressure drop coefficient Δp/½ρυ2 provides sufficient information, where Δp is the pressure drop across the screen, ρ the density of the fluid, and υ the velocity of approach to the screen.


1960 ◽  
Vol 64 (590) ◽  
pp. 103-105
Author(s):  
P. G. Morgan

The flow through porous screens has been widely studied from both the theoretical and experimental points of view. The most widely used types of screen are the wire mesh and the perforated plate, and the majority of the literature has been concerned with the former. Several attempts have been made to correlate the parameters governing the flow through such screens, i.e. the pressure drop, the flow conditions and the geometry of the mesh.


1959 ◽  
Vol 63 (584) ◽  
pp. 474-475 ◽  
Author(s):  
P. G. Morgan

The Flow of Fluids through screens has been widely studied with particular importance being attached to the measurement of the pressure drop caused by a screen and its relation to the screen geometry and the flow conditions. The majority of the investigations have been carried out on wire gauze screens mounted in ducts with air passing through them, the static pressure being measured on either side of the gauze. Attempts have been made by Weighardt Annand and Grootenhuisto correlate the gauze geometry with the pressure drop and to enable the pressure loss over a given screen and with given flow conditions to be predicted.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


Author(s):  
Kevin K. Bultongez ◽  
G. A. Riley ◽  
Melanie M. Derby

The present study investigates the effects of tube roughness and wettability on oil-water flow regimes in mini channels. The tube material examined included borosilicate glass (i.e., e = 0.1 μm) and stainless steel (i.e., e = 5 μm). Flow patterns and pressure drop were measured and presented for different combinations of oil and water superficial velocities, 0.28–3.36 m/s and 0.07–5 m/s, respectively. Stratified, annular, intermittent, and dispersed flow regimes were observed in all tubes and between tubes, many similarities in flow regime emerged. Tube wettability affected flow regime and flow transition from stratified to annular and intermittent flows. Surface roughness had an observable effect overall flow regime and particularly on pressure drop measurements as stainless steel recorded higher pressure drops.


2018 ◽  
Vol 20 (3) ◽  
pp. 564-576 ◽  
Author(s):  
Matteo Rubinato ◽  
Seungsoo Lee ◽  
Ricardo Martins ◽  
James D. Shucksmith

Abstract Accurately quantifying the capacity of sewer inlets (such as manhole lids and gullies) to transfer water is important for many hydraulic flood modelling tools. The large range of inlet types and grate designs used in practice makes the representation of flow through and around such inlets challenging. This study uses a physical scale model to quantify flow conditions through a circular inlet during shallow steady state surface flow conditions. Ten different inlet grate designs have been tested over a range of surface flow depths. The resulting datasets have been used (i) to quantify weir and orifice discharge coefficients for commonly used flood modelling surface–sewer linking equations and (ii) to validate a 2D finite difference model in terms of simulated water depths around the inlet. Calibrated weir and orifice coefficients were observed to be in the range 0.115–0.372 and 0.349–2.038, respectively, and a relationship with grate geometrical parameters was observed. The results show an agreement between experimentally observed and numerically modelled flow depths but with larger discrepancies at higher flow exchange rates. Despite some discrepancies, the results provide improved confidence regarding the reliability of the numerical method to model surface to sewer flow under steady state hydraulic conditions.


Author(s):  
Namwon Kim ◽  
Michael C. Murphy ◽  
Steven A. Soper ◽  
Dimitris E. Nikitopoulos

Liquid-liquid segmented flows in microchannels fabricated on polymer test chips were investigated experimentally. Polymer test chips were prepared using hot embossing of polycarbonate (PC) sheets with micro-milled brass mold inserts. Three different configurations of microchannels were prepared with injection to test channels expansion ratios of 16, 4 and 2 and a fixed test channel geometry. Deionized water with blue food-coloring dye (1% v/v) was used as a dispersed fluid at flow rates (QD) between 0.5 and 60 μl/min. The carrier fluid was perfluorocarbon (FC 3283) with nonionic fluorous-soluble surfactant (Perfluorooctanol, 10% v/v) at flow rates (QC) between 3 and 25 μl/min. The two fluids were injected separately into the chips. Droplet and Plug flows with transient Irregular Segmented flows between two flow regimes were mainly observed in the test channels of the three different chips. Flow pattern maps and transitions between flow regimes were determined in terms of a fixed homogeneous carrier fluid volumetric flow ratio (βC) to compare the effect of the expansion ratios from the injection to the test channels. The droplet and plug regimes were shifted to higher carrier and lower dispersed fluid superficial velocities and the plug flow regime was broader with the lower expansion ratio channels. The transient irregular segmented flow was favored in the higher expansion channel ratio and the interval of transient irregular segmented flow between droplet and plug flow regimes were shorter for the low expansion channel ratios. This is evidence that flow regime maps in micro-channels are not universal and depend on the configuration part of the micro-injection system. The length of the dispersed segmented flows and the distance between consecutive droplets or plugs as a function of βC were determined by image processing of frames acquired via CCD camera with bright field illumination. The average length of the dispersed fluid was shown to scale approximately with βC to the −1.2 power. Velocities of the dispersed droplet and plug flows were measured using double-pulsed laser illumination and were found to be 1.25 ± 0.049 and 1.46 ± 0.077 times faster than the superficial velocity of the segmented flow respectively. Two-phase pressure drop measurements were also carried out for all flow regimes and associated trends were correlated with changes in flow topology. Comparisons of experimental pressure drop with the predictions for a modified Lockhart-Martinelli correlation were also made.


Author(s):  
B. G. Shiva Prasad ◽  
Jacob A. Groshek

Inlet manifolds in HVAC systems are required to deliver specified amounts of refrigerant and oil to multiple compressors. However, multiphase flow through such manifolds is quite sensitive to upstream geometry and flow conditions. This paper reports a CFD investigation done to understand the sensitivity of oil flow (the minor component) in such manifolds with a T junction and 3 outlet pipes to the design of the inlet feed pipe geometry. The main objective was to understand the effect of upstream bends and settling length on the nature of flow through the outlets, particularly with reference to the delivery of the required amount of oil and refrigerant to each compressor. The results indicated that the refrigerant flow was not sensitive to upstream effects, while the oil flow was quite sensitive to distortions introduced in to the upstream flow field by lack of sufficient settling length and bends. It further showed that the sensitivity increased with oil droplet size.


2021 ◽  
Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract Demanding for multiphase pumps introduces new challenges to the pump design. To prevent machine failures, the performance of the pump (non-contact) annular seal under multiphase conditions needs to be studied. The air addition into the oil flow not only changes the properties of the fluid but also can change the flow status in the seal clearance. The flow status can significantly affect the performance of the pump seal and thereby impact the pump vibration performance. Within the seal annulus, the axial direction flow is dominated by the pressure drop through the seal and can be considered as a Poiseuille flow. The circumferential direction flow is driven by the rotor rotation and can be considered as a Couette flow. The regime of the flow in the seal is controlled by the axial Reynolds number and the circumferential Reynolds number. Published test results on the boundaries between the laminar, transitional, and turbulent regimes in an annular seal are scant. This paper will first draw these boundaries based on the test data for long smooth pump seals. Then, this paper will show the performance of the long smooth pump seal in different flow regimes. Predictions will also be presented to compare with test results under different flow conditions.


Sign in / Sign up

Export Citation Format

Share Document