scholarly journals Root rot grain crops on Cereals caused by the phytopathogenic fungi

2018 ◽  
Vol 245 ◽  
pp. 11006 ◽  
Author(s):  
Nadezhda Grebenikova ◽  
Alexander Korshunov ◽  
Vasily Rud’ ◽  
Ivan Savchenko ◽  
Marcia Marques

Researching the special and infraspecial structure in causative agent populations of the most dangerous diseases root rots of cereals in various regions of the Russjan Federation has been carried out. The defeat of cereals root rots old in Russia causes in the a complex patogenic. More often meet Fusarium culmorum (W.G.Sm.) Sacc., F. oxysporum (Schlecht.) Snyd.et Hans., F. heterosporum Nees., F. sporotrichiella nom.nov. Bilai F. gibbosum App.et Wr.emend Bilai., F. avenaceum (Fr.) Sacc. and Bipolaris sorokiniana (Sacc.) Shoem., Alternaria spp.

2021 ◽  
Vol 2 (44) ◽  
pp. 22-22
Author(s):  
Alexander Saakian ◽  
◽  

The taxonomic composition and incidence of phytopathogenic fungi on the roots of soft spring wheat Triticum aestivum L. of nine varieties of Siberian origin (Altayskaya 70, Altayskaya 75, Krasnoyarskaya 12, Novosibirskaya 15, Novosibirskaya 16, Novosibirskaya 29, Novosibirskaya 31, Novosibirskaya 41 and Svirel) cultivated using wheat and fallow as a predecessor, was studied in the area of Kansk-Krasnoyarsk forest-steppe. Average incidence of fungal root infection was 24%. In plants grown using wheat as a predecessor, the incidence was statistically significantly (p <0.05) higher than in plants grown using fallow as a predecessor (27.3 versus 20.6%). Statistically significant (p <0.05) differences in the prevalence of root infection were revealed between cultivars. The maximal prevalence (33.3 and 32.3%, respectively) on average for the wheat predecessor and fallow was found for the varieties Svirel and Altayskaya 75, the minimal (16.7%) for the varieties Novosibirskaya 16 and Altayskaya 70. The complex of phytopathogenic fungi on the roots is represented by Fusarium spp., Bipolaris sorokiniana and Alternaria spp. (31.4, 44.9 and 23.7% of the pathogenic complex on average for varieties and variants, respectively). The composition of pathogens statistically significantly (p <0.01) depends on the predecessor. In the plants cultivated using wheat as a predecessor, the proportion of Alternaria spp. was higher whereas proportions of Fusarium spp. and Bipolaris sorokiniana were lower. No differences in prevalence and taxonomic composition of root infection between varieties originated from Novosibirsk territory, Krasnoyarsk territory and Altay territory were found. Keywords: SPRING WHEAT, ROOT ROT, KRASNOYARSK TERRITORY, FUSARIUM SPP., BIPOLARIS SOROKINIANA, ALTERNARIA SPP


1960 ◽  
Vol 38 (4) ◽  
pp. 601-611 ◽  
Author(s):  
J. E. Andrews ◽  
J. S. Horricks ◽  
D. W. A. Roberts

The effect of plant age and root rot caused by Bipolaris sorokiniana and Fusarium culmorum on the cold hardiness of winter wheat and the effect of cold injury on root-rot infection were studied during 3 years at Lethbridge, Alberta. The oldest and youngest plants were less cold hardy than those of an intermediate age. Root-rot damage predisposed plants to cold injury and, in turn, cold injury predisposed plants to root-rot damage. Winter wheat inoculated with B. sorokiniana and F. culmorum and seeded at the earliest dates had recovered from infection before exposure to the freezing treatment and, apparently because of delayed development, was more cold hardy than uninoculated wheat seeded on the same date. Results from cold-chamber and field studies indicated that the severe root-rot damage often observed in nearly mature winter wheat seeded early the previous year is not a direct result of heavy infection at or near the time of seeding but is secondary to winter injury that often occurs in early-seeded winter wheat.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 61 ◽  
Author(s):  
Larisa Shcherbakova ◽  
Tatyana Nazarova ◽  
Oleg Mikityuk ◽  
Ekaterina Istomina ◽  
Tatyana Odintsova

An approach to manage seed-transmitted Fusarium crown-foot-root rot (FCR, Fusarium spp.) and common root rot (CRR, Bipolaris sorokiniana) on wheat, avoiding environmental risks of chemicals, is seed treatments with microbial metabolites. F. sambucinum strain FS-94 that induces resistance to tomato wilt was shown by this study to be a source of non-fungitoxic wheat-protecting metabolites, which were contained in a mycelium extract purified by gel-chromatography and ultrafiltration. Plant-protecting effect of the purified mycelial extract (PME) was demonstrated in vegetation experiments using a rolled-towel assay and by small-plot field trials. To elucidate mechanisms putatively underlying PME protective activity, tests with cultured Triticum aestivum and T. kiharae cells, particularly the extracellular alkalinization assay, as well as gene expression analysis in germinated wheat seeds were used. Pre-inoculation treatments of seeds with PME significantly decreased the incidence (from 30 to 40%) and severity (from 37 to 50%) of root rots on seedlings without any inhibition of the seed germination and potentiation of deoxynivalenol (DON), DON monoacetylated derivatives and zearalenon production in FCR agents. In vegetation experiments, reductions in the DON production were observed with doses of 0.5 and 1 mg/mL of PME. Pre-sowing PME application on seeds of two spring wheat cultivars naturally infected with FCR and CRR provided the mitigation of both diseases under field conditions during four growing seasons (2013–2016). PME-induced ion exchange response in cultured wheat cells, their increased survivability, and up-regulated expression of some defensins’ genes in PME-exposed seedlings allow the suggestion of the plant-mediated character of disease-controlling effect observed in field.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1299-1306 ◽  
Author(s):  
Berna Tunali ◽  
Julie M. Nicol ◽  
David Hodson ◽  
Zafer Uçkun ◽  
Orhan Büyük ◽  
...  

The objective of this study was to determine the distribution frequency of the fungi associated with wheat (Triticum aestivum) crowns and roots in cereal producing areas of Turkey through a targeted survey of 518 commercial fields over a 2-year period. More than 26% of the fields had one or more of the fungal species commonly reported as part of the dryland root rot complex, Fusarium culmorum (14%) > Bipolaris sorokiniana (10%) > F. pseudograminearum (2%). The fungi considered to be part of the high rainfall root rot complex were found at very low frequencies: 2% for Gaeumannomyces graminis and 3% for Pythium spp. Species of Rhizoctonia were found in 22% of the fields. Several Fusarium species considered to be less or nonpathogenic to cereals were also found in high frequencies at 11% (F. oxysporum, F. chlamydosporum), 10% (F. sporotrichioides), and 8% (F. avenaceum and F. solani). The mostly random distribution of cereal root-rotting species across the survey area suggests the fungi are not distributed in any distinct agroecological relationship. As a result, the relative economic importance of a given species on wheat will be determined by a number of factors, such as their fungal pathogenicity, host susceptibility/tolerance, and the seasonal conditions. Results from this study suggest that there are a wide range of fungal species associated with root and crown tissues of wheat.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2149-2157
Author(s):  
Göksel Özer ◽  
Timothy C. Paulitz ◽  
Mustafa Imren ◽  
Mehtap Alkan ◽  
Hafiz Muminjanov ◽  
...  

A comprehensive survey was performed to assess fungal populations associated with crown and root rot of wheat throughout the main wheat-growing areas of Azerbaijan. Samples were taken from 76 fields; 630 fungal strains were isolated, identified, and evaluated for pathogenicity. The identification was conducted with morphological and molecular tools such as species-specific PCR and DNA sequencing of the internal transcribed spacer (ITS) and translation elongation factor 1-α (EF1-α) loci. The fungus found in the greatest number of fields (44) was Fusarium culmorum with 192 isolates, followed by F. acuminatum. Other Fusarium spp. isolates were identified: F. equiseti, F. pseudograminearum, F. graminearum, F. incarnatum, F. avenaceum, F. hostae, F. oxysporum, F. proliferatum, F. algeriense, and F. brachygibbosum. Bipolaris sorokiniana, Curvularia spicifera, Exserohilum pedicellatum, Nigrospora oryzae, and Rhizoctonia spp. isolates were also identified, associated with underground parts of wheat. Phylogenetic analyses based on ITS and EF1-α sequences of the isolates showed that the isolates belonging to the same species were clearly separated in the dendrogram. Pathogenicity assays revealed that F. culmorum, F. pseudograminearum, and F. graminearum were most aggressive; F. avenaceum, F. hostae, F. algeriense, B. sorokiniana, C. spicifera, and R. solani isolates were moderately aggressive; C. inaequalis, E. pedicellatum, and N. oryzae were weakly aggressive; and others were nonpathogenic. The result of this study exhibited the existence of a wide range of species associated with crown and root rot of wheat in Azerbaijan. Additionally, this is the first report of F. hostae, F. algeriense, C. spicifera, C. inaequalis, and N. oryzae as pathogens on wheat in Azerbaijan. Azerbaijan is the second country after Algeria in which F. algeriense was detected.


2020 ◽  
pp. 674-681
Author(s):  
Rıza Kaya ◽  
Meltem Avan ◽  
Cemre Aksoy ◽  
Fikret Demirci ◽  
Yakup Zekai Katircioğlu ◽  
...  

Sugar beet is extensively grown in Konya province of Turkey and about one third of production of Turkey is obtained from this region. Recently root rots have been observed at all the growth stages of sugar beet especially at later stages near the harvest. During 2015–2017 growing years, 866 fields were visited and diseased samples having root rot symptoms were collected. Various root rot pathogens were isolated from 691 fields; Rhizoctonia solani being the most common (15% of the fields) followed by Fusarium oxysporum, F. solani, Phoma betae, Aphanomyces cochlioides and Pythium spp. Apart from these pathogens, Fusarium culmorum, F. equiseti, F. sambucinum, F. verticillatum, unidentified Fusarium spp., Macrophomina phaseolina and Phytophthora spp. were also determined. All the fungal pathogens were isolated from both of the sugar beet growing stages of 0–12 BBCH and 31–49 BBCH, some of them being high ratios at the late stages. Some isolates of A. cochlioides, P. betae, Pythium spp., Phytophthora spp., and R. solani were highly aggressive when tested by a soil inoculum layer technique. Effects of twelve fungicides, in sixteen different combination and rate, on the most virulant and common four pathogens, A. cochlioides P. betae, Py. ultimum var. ultimum, Rhizoctonia solani, were investigated by the same technique. None of the fungicide mixes inhibited all four pathogens. Thiram + metalaxyl + hymexazol + pyraclastrobin mix sufficiently prevented disease development of the first three pathogens but not R. solani.


1998 ◽  
Vol 64 (7) ◽  
pp. 2386-2391 ◽  
Author(s):  
A. Friebe ◽  
V. Vilich ◽  
L. Hennig ◽  
M. Kluge ◽  
D. Sicker

ABSTRACT The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var.tritici, Gaeumannomyces graminis var.graminis, Gaeumannomyces graminis var.avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminisvar. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var.tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA.N-(2-Hydroxyphenyl)-malonamic acid andN-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis andG. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. triticimetabolite of BOA. No metabolite accumulation was detected forG. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance ofGaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability ofGaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.


Plant Disease ◽  
1997 ◽  
Vol 81 (10) ◽  
pp. 1216-1216 ◽  
Author(s):  
M. E. Sánchez-Hernández ◽  
A. Ruiz-Dávila ◽  
A. Trapero-Casas

Several species of the genus Phytophthora are associated with root rot and trunk cankers in olive trees (Olea europaea L.). Among them, Phytophthora megasperma has been cited as being associated with olive root rots in Greece (1). Unidentified species of Pythium and Phytophthora have also been associated with olive tree root rots in the United States. However, the status of P. megasperma and Pythium spp. as olive tree root pathogens has remained unclear. Following a 5-year period of severe drought in southern Spain, autumn-winter rainfall rates in 1996 to 1997 steadily increased in both quantity and frequency. Under these unusually wet conditions, olive trees remained waterlogged for several months. During this period, we observed foliar wilting, dieback, and death of young trees, and later found extensive root necrosis. In 46 of 49 affected plantations surveyed, P. megasperma was consistently isolated from the rotted rootlets, particularly in young (<1- to 10-year-old trees) plantations. This fungus was not detected on plant material affected by damping-off from several Spanish olive tree nurseries. The opposite situation occurred with P. irregulare. This species was not associated with rotted rootlets in the field. In contrast, it was consistently isolated from necrotic rootlets from young olive plants affected by damping-off. These plants were grown in a sand-lime-peat soil mixture under greenhouse conditions and showed foliar wilting and extensive necrosis of the root systems. Pathogenicity tests were conducted with several isolates of P. megasperma and P. irregulare on 6-month-old rooted cuttings of olive, under both weekly watering and waterlogged conditions. Under waterlogged conditions, both fungal species produced extensive root necrosis 2 weeks after inoculation that resulted in wilting of the aerial parts and rapid plant death. Waterlogged control plants remained without foliar symptoms but a low degree of root necrosis was recorded. In addition, under weekly watering conditions, plants inoculated with either species showed some degree of root rot but foliar symptoms were not evident. No differences in pathogenicity were observed within the Phytophthora or Pythium isolates. Reference: (1) H. Kouyeas and A. Chitzanidis. Ann. Inst. Phytopathol. Benaki 8:175, 1968.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1526
Author(s):  
Yanjie Yi ◽  
Youtian Shan ◽  
Shifei Liu ◽  
Yanhui Yang ◽  
Yang Liu ◽  
...  

Common root rot, caused by Bipolaris sorokiniana, is one of the most prevalent diseases of wheat and has led to major declines in wheat yield and quality worldwide. Here, strain XZ34-1 was isolated from soil and identified as Bacillus amyloliquefaciens based on the morphological, physiological, biochemical characteristics and 16S rDNA sequence. Culture filtrate (CF) of strain XZ34-1 showed a high inhibition rate against B.sorokiniana and had a broad antifungal spectrum. It also remarkably inhibited the mycelial growth and spore germination of B. sorokiniana. In pot control experiments, the incidence and disease index of common root rot in wheat seedlings were decreased after treatment with CF, and the biological control efficacy was significant, up to 78.24%. Further studies showed XZ34-1 could produce antifungal bioactive substances and had the potential of promoting plant growth. Lipopeptide genes detection with PCR indicated that strain XZ34-1 may produce lipopeptides. Furthermore, activities of defense-related enzymes were enhanced in wheat seedlings after inoculation with B.sorokiniana and treatment with CF, which showed induced resistance could be produced in wheat to resist pathogens. These results reveal that strain XZ34-1 is a promising candidate for application as a biological control agent against B.sorokiniana.


Sign in / Sign up

Export Citation Format

Share Document