scholarly journals Effect of climate change on the energy performance and thermal comfort of high-rise residential buildings in cold climates

2019 ◽  
Vol 282 ◽  
pp. 02066
Author(s):  
Fuad Mutasim Baba ◽  
Hua Ge

Buildings now produce more than a third of global greenhouse gases, making them more than any other sector contributing to climate change. This paper investigates the effect of climate change on the energy performance and thermal comfort of a high-rise residential building with different energy characteristic levels, i.e. bylaw to meet current National Energy Code of Canada for Buildings (NECB), and passive house (PH) under two climate zones in British Columbia, Canada. SRES A2, RCP-4.5 and RCP-8.5 emission scenarios are used to generate future horizon weather data for 2020, 2050, and 2080. The simulation results show that for both bylaw and PH cases, the heating energy consumption would be reduced while cooling energy consumption would be increased. As a result, for the bylaw case, the total energy consumption would be decreased for two climate zones, while for PH case, the total energy consumption would be increased for zone 4 and decreased for zone 7. In addition, the number of hours with overheating risks would be increased under future climates, e.g. doubled in 2080, compared to the historical weather data. Therefore, efforts should be made in building design to take into account the impact of climate change to ensure buildings built today would perform as intended under changing climate.

2020 ◽  
Vol 12 (11) ◽  
pp. 4726 ◽  
Author(s):  
Qiong He ◽  
S. Thomas Ng ◽  
Md. Uzzal Hossain ◽  
Godfried L. Augenbroe

This study presents a data-driven retrofitting approach by systematically analyzing the energy performance of existing high-rise residential buildings using a normative calculation logic-based simulation method. To demonstrate the practicality of the approach, typical existing buildings in five climate zones of China are analyzed based on the local building characteristics and climatic conditions. The results show that the total energy consumption is 544 kWh/m2/year in the severe cold zone, which is slightly higher than that in the cold zone (519 kWh/m2/year), but double that in the hot summer and cold winter zone, three times higher than that in the warm zone, and five times above that in the temperate zone. The dominant energy needs in different climatic zones are distinctive. The identified potentially suitable retrofitting measures are important in reducing large-scale energy consumption and can be used in supporting sustainable retrofit decisions for existing high-rise residential buildings in different climatic zones.


2020 ◽  
pp. 1420326X2096115
Author(s):  
Jaime Resende ◽  
Marta Monzón-Chavarrías ◽  
Helena Corvacho

Buildings account for 34% of world energy consumption and about half of electricity consumption. The nearly/Net Zero Energy Building (nZEB/NZEB) concepts are regarded as solutions for minimizing this problem. The countries of Southern Europe, which included the nZEB concept recently in their regulatory requirements, have both heating and cooling needs, which adds complexity to the problem. Brazil may benefit from their experience since most of the Brazilian climate zones present significant similarities to the Southern European climate. Brazil recently presented a household energy consumption increase, and a growing trend in the use of air conditioning is predicted for the coming decades. Simulations with various wall and roof solutions following the Brazilian Performance Standard were carried out in a low standard single-family house in three different climate zones in order to evaluate thermal comfort conditions and energy needs. Results show that in milder climate zones, achieving thermal comfort with a low energy consumption is possible, and there is a great potential to achieve a net zero-energy balance. In the extreme hot climate zone, a high cooling energy consumption is needed to provide thermal comfort, and the implementation of a nearly zero-energy balance may be more feasible.


2018 ◽  
Vol 251 ◽  
pp. 03018
Author(s):  
Fuad Mutasim Baba ◽  
Hua Ge

The Earth is already experiencing some of the effects of climate change, such as rising temperature, more frequent storms, increased precipitation, etc. This paper investigates the effect of climate change on the energy consumption of a single-family house with different energy efficiency levels, i.e. bylaw to meet current National Energy Code of Canada for Buildings (NECB), and passive house (PH) to meet the PH requirements under four climate zones in British Columbia, Canada. SRES A2, RCP 4.5 and RCP 8.5 emission scenarios are used to generate future climate for 2020, 2050, and 2080. The simulation results show that for both bylaw and PH cases, heating energy consumption will be reduced while cooling energy consumption will be increased, as a result for bylaw case, the energy consumption will be decreased for four climate zones, while for PH case, the energy consumption will be increased for zone 4 & 5 and decreased for zone 6 & 7. In climate zone 5, the building fails to meet the PH requirements during 2050. Therefore, buildings designed based on historical weather data will perform differently under the changing future climates, thus the efforts should be made to design buildings that are adaptable to climate change.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Luciana Debs ◽  
Jamie Metzinger

The present research analyzes the impact of nine factors related to household demographics, building equipment, and building characteristics towards a home’s total energy consumption while controlling for climate. To do this, we have surveyed single-family owned houses from the 2015 Residential Energy Consumption Survey (RECS) dataset and controlled the analysis by Building America climate zones. Our findings are based on descriptive statistics and multiple regression models, and show that for a median-sized home in three of the five climate zones, heating equipment is still the main contributor to a household’s total energy consumed, followed by home size. Social-economic factors and building age were found relevant for some regions, but often contributed less than size and heating equipment towards total energy consumption. Water heater and education were not found to be statistically relevant in any of the regions. Finally, solar power was only found to be a significant factor in one of the regions, positively contributing to a home’s total energy consumed. These findings are helpful for policymakers to evaluate the specificities of climate regions in their jurisdiction, especially guiding homeowners towards more energy-efficient heating equipment and home configurations, such as reduced size.


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


Author(s):  
Junjie Liu ◽  
Xiaojie Zhou ◽  
Zhihong Gao

With the development of energy saving, it is needed to calculate the energy consumption of the residential building, particularly accurate dynamic energy consumption. Fixed shading devices are wildly used to save building energy because they prevent undesirable heat coming through the windows during the “overheated period”, just as in summer, which can ameliorate the indoor environments and reduce the energy consumption of air-conditioning in summer. But they will also prevent solar energy which can be used in winter to enter windows. So it is very important to be able to determine the optimal shading devices of windows. The overhangs and vertical-shading devices are representative to study the different energy performance in summer and winter, in an actual dwell house. On the other hand, fixed shading devices can weaken the effect of daylighting, so we would take both the total energy consumption and rooms’ daylighting into account. In this study, we choose several typical dwelling houses in different cities located in north, south, west, east and central region of China respectively. We calculated energy consumption of those models by using Energyplus program, and compared the shading performance of horizontal and vertical shading devices, then optimal configuration dimensions of horizontal shading devices are recommended on the basis of different requirements for solar heat gains in winter and in summer for those typical dwelling houses.


Author(s):  
Francesco Barreca ◽  
Giuseppe Modica ◽  
Salvatore Di Fazio ◽  
Viviana Tirella ◽  
Raimondo Tripodi ◽  
...  

Food industry is the production sector with the highest energy consumption. In Europe, the energy used to produce food accounts for 26% of total energy consumption. Over 28% is used in industrial processes. Recently, European food companies have increased their efforts to make their production processes more sustainable, also by giving preference to the use of renewable energy sources. In Italy, the total energy consumption in agriculture and food sectors decreased between 2013 and 2014, passing from 16.79 to 13.3 Mtep. Since energy consumption in food industry is nearly twice the one in agriculture (8.57 and 4.73 Mtep, respectively), it is very important to improve energy efficiency and use green technologies in all the phases of food processing and conservation. In Italy, a recent law (Legislative Decree 102, 04/07/2014) has made energy-use diagnosis compulsory for all industrial concerns, particularly for those showing high consumption levels. In the case of food industry buildings, energy is mainly used for indoor microclimate control, which is needed to ensure workers’ wellbeing and the most favourable conditions for food processing and conservation. To this end, it is important to have tools and methods allowing for easy, rapid and precise energy performance assessment of agri-food buildings. The accuracy of the results obtainable from the currently available computational models depends on the grade of detail and information used in constructional and geometric modelling. Moreover, this phase is probably the most critical and time-consuming in the energy diagnosis. In this context, fine surveying and advanced 3D geometric modelling procedures can facilitate building modelling and allow technicians and professionals in the agri-food sector to use highly efficient and accurate energy analysis and evaluation models. This paper proposes a dedicated model for energy performance assessment in agri-food buildings. It also shows that using advanced surveying techniques, such as a terrestrial laser scanner and an infrared camera, it is possible to create a three-dimensional parametric model, while, thanks to the heat flow meter Accepted paper measurement method, it is also possible to obtain a thermophysical model. This model allows assessing the energy performance of agri-food buildings in order to improve the indoor microclimate control and the conditions of food processing and conservation.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5836
Author(s):  
Ali Mohammed AL-Dossary ◽  
Daeung Danny Kim

In Saudi Arabia, residential buildings are one of the major contributors to total energy consumption. Even though there are abundant natural resources, it is somewhat difficult to apply them to building designs, as design variables, due to slow progress and private issues in Saudi Arabia. Thus, the present study demonstrated the development of sustainable residential building design by examining the daylighting and energy performance with design variables. Focusing on the daylighting system, the design variables were chosen, including window-to-wall ratios (WWR), external shading devices, and types of glazing. The illuminance level by these design variables in a building was evaluated by using daylight metrics, such as spatial daylight autonomy and annual sunlight exposure. Moreover, the building energy consumption with these design variables was analyzed by using energy simulation. As a result, the daylighting was improved with the increase in WWRs and the tinted double glazing, while these design options can cause overheating in a residential building. Among types of glazing, the double pane windows with a low-E coating showed better energy performance. Based on the results, it is necessary to find the proper design variables that can balance the daylighting and energy performance in residential buildings in hot climates.


2018 ◽  
Vol 2 (3) ◽  
pp. 136
Author(s):  
Amr Soliman ElGohary ◽  
Shereen Omar Khashaba

Existing buildings are the massive percentage of the building stock, and therefore, are the key to improving efficiency; buildings account for an enormous share of the climate change crisis, and approximately 40% of the world total energy consumption (McArthur & Jofeh, 2015). The Egyptian stock of buildings includes about 12 million buildings. 60% of these buildings are residential. The final electricity consumption of the residential buildings in 2010 was 51370 GWh and increased in 2014 to reach 62441 GWh. Thus the share of total energy consumption was 18.8% in 2010 and increased to reach 21.55% in 2014 ("Technology Roadmap - Energy efficient building envelopes.", 2013). Therefore, the residential sector plays an important role in the mitigation of energy consumption crisis, which is expected to increase. The research field and initiatives in Egypt on the green buildings and green buildings retrofits are rare and, if existing, are weakly applied. Unlike in developed countries, there is a large research on building retrofits, e.g., the Residential Property Assessed Clean Energy (R-PACE) program and the weatherization assistance program (WAP) of the department of energy (DOE). Both are examples of the incentives to green building initiatives globally. This paper discusses the challenge of greening the existing residential buildings in Egypt by demonstrating an analysis of the motives and the barriers to applying green measures in the Egyptian market. The research methodology comprises the analytical-comparative method. In the analytical part; the paper identifies the current situation of the residential sector energy consumption in Egypt, and the benefits of greening existing buildings for tenants, investors, and owners. In the comparative part, the current situation of Egypt's Green Market Business Case is compared with the international one, discussing the challenge of greening the residential buildings. The paper summarizes the opportunities to improve the building energy efficiency, incentives, and policies that are developed to address significant financial and technical awareness to building efficiency. These policies will help enable critical market actors to make decisions to promote energy efficiency in existing buildings.


Residential buildings at coastal zone of Egypt face a great shortage in ventilation and thermal comfort, although it has a good orientation to the north. The research focused on Marsa Matrouh city because it is a poor community that has the privilege of sea view. So the research goal is to apply passive natural techniques to apply thermal comfort in this region to decrease the high rise temperature, the IPCC reports stated that there will be high rise temperature for this region as a results of climate change scenarios, for this reason the research aimed to upgrade the existed residential building to cope with this expected high temperature in natural passive way, also it is a good sample for implementing national architecture identity to achieve sustainability by using wooden shatter, wind capture and double glazing. In this research we proved that the optimum affordable natural ventilation technique is the using of double glassing and wooden overhang above each window, this suggested system allowed the air flow to be sucked in order to reduce internal temperature and energy consumption inside any residential buildings. Also the research verified the efficiency of this system by using soft computing technique (Design builder) for measuring the quantities of air flow, solar energy, carbon dioxide emissions, temperature and energy consumption. We aimed to optimize the suggested system to create a new methodology for thermal comfort at coastal zones to solve the high rise temperature issue.


Sign in / Sign up

Export Citation Format

Share Document