scholarly journals Automation of Operations Design for Complex-Shaped Surfaces Processing

2019 ◽  
Vol 297 ◽  
pp. 05008
Author(s):  
Margarita Markova ◽  
Andrey Markov ◽  
Aleksandr Balashov ◽  
Norbert Sczygiol

Research work is aimed at modeling the process of milling surfaces of complex shape in automated CAD/CAM systems. To reduce labour input of this process, an algorithm for designing milling operations is proposed. The algorithm is implemented in the form of software written in the VBA programming language from Office Excel. The software allows to select cutting tools and cutting modes for roughing, semi-finishing and finishing milling. The initial data for this are: processed material, part configuration, profile depth, technical requirements on the surface. The work of the algorithm was tested on the parts of the mold type. It is found that the set of cutting tools for all types of milling surfaces of complex shape is selected taking into account the overall dimensions of the treated surface, its curvature and radii of surfaces rounding. The results of simulation of mold processing in Sprut CAM system according to the assigned set of cutting tools and cutting modes allowed to choose the tool path with minimal processing time.

2010 ◽  
Vol 426-427 ◽  
pp. 520-524 ◽  
Author(s):  
Song Lin Ding ◽  
John Mo ◽  
D. Yang

Owning to the ultra high feed rate and spindle speed, tool path patterns which are less important in conventional metal cutting processes becomes critical in High Speed Machining (HSM). Without an appropriate tool path strategy HSM can not be fully implemented even though the CNC machine has HSM potentials. In practice attentions are usually drawn to advanced hardware components; tool path pattern catering to HSM is often overlooked. This paper introduces the principles of tool path generation for HSM. Essential properties of HSM and its technical requirements on the CAD/CAM system are summarized. The state-of-the-art technologies and practice-oriented tool path generation methodologies are presented.


Author(s):  
Derek Yip-Hoi

Virtual Machining (VM) is the use of computers to simulate the physics of machining processes. It can be used to effectively identify problems in machining complicated workpieces and in optimizing processes. At the heart of VM is the ability to predict the cutting forces generated as the tool generates chips at the tool workpiece interface. For these predictions to be realistic two things are necessary. First, accurate representations of how the cutter engages the workpiece need to be generated along each toolpath under consideration. This is referred to as the Cutter/Workpiece Engagement (CWE). Second, a force model is needed that integrates the contribution from each element within the CWE. In this paper a new technique for integrating the force contributions is presented. It utilizes a Quad-Tree representation for the CWE. This representation provides several advantages over other approaches for integrating the force contributions. Amongst these is the ability to represent the aggregated force at different resolutions. This has the potential to reduce the time required to perform a simulation by scanning a tool path at a lower resolution to bound intervals where heavy engagements are encountered. These intervals can then be analyzed at a higher resolution for greater accuracy. Examples are presented using CWEs extracted for 2 1/2D milling operations from a component modeled on a leading CAD/CAM system.


2013 ◽  
Vol 631-632 ◽  
pp. 1335-1341
Author(s):  
Shi Yong ◽  
Wen Tao Liu

In order to meet the needs of enterprises for chamfering complex parts, based on the customization of commercial CAD/CAM software, chamfer programming software is developed. According to user’s machining demands for a part, a chain of edges of a part is extracted from its 3D model. With preprocessing of the chain of edges, the continuity of the chain is estimated, and the start and end point of those edges are automatic obtained. Furthermore, with human-machine dialogue, machining parameters is set by users. By definition of the primary and secondary surfaces of the chain of edges, and interpolation of the edges, the positions of cutter location point and postures of cutter are calculated. Finally the interference of tool path is checked, and tool path is simulated. The software solves the programming problem of chamfering complex parts.


Author(s):  
Zezhong C. Chen ◽  
Wei Cai

In CNC machining, machining errors are usually caused by some of the sources such as cutting tool deflection, cutting tool wear, machine tool vibration, improper coolant/lubrication, and negative thermal effect. To increase product accuracy, much research has been carried out on the prediction of machining errors. However, in milling of sculptured surface parts, due to their curved shapes, the geometries of cutting tools do not match the parts’ surfaces well if the tools cut along the tool paths on the surfaces in a point-to-point way. As a consequence, machining error is inevitable, even if there is no other source of error in ideal machining conditions. To predict machining errors caused by this tool-surface mismatch, several methods have been proposed. Some of them are simple, and some represent the geometry of machined surfaces using cutter-swept surfaces. But none of these methods is accurate and practical. In this research work, a generic, geometric approach to predicting machining errors caused by the tool-surface mismatch is proposed for 3-axis sculptured surface milling. First, a new geometric model of the furrow formed by an APT tool moving between two neighboring cutter contact (CC) points is built. Second, the mathematical formula of cutting circle envelopes is derived. Then an algorithm for calculating machining errors in each tool motion is provided. Finally, this new approach is applied to two practical parts for the accurate machining-error predictions, and these predictions are then compared to the inaccurate predictions made by two established methods to demonstrate the advantages of this approach. This approach can be used in tool path planning for high precision machining of sculptured surface parts.


Author(s):  
Jui-Jen Chou ◽  
D. C. H. Yang

Abstract In the integration of CAD and CAM, it is necessary to relate machine tool kinematics and control in a CAM process to the geometrical data in a CAD model. The data stored in a CAD model is usually static in nature and represented by unitless parameters. Yet, in machine tool motion and control, the data should be transformed into a time dependent domain. In this paper, a general theory on the conversion from desired paths to motion trajectory is analytically derived. The geometrical properties of a desired path, including position, tangent, and curvature are related to the kinematics of coordinated motion including feedrate, acceleration, and jerk. As a result, the motion commands used as control references to track arbitrary space curves for five-axis computer-controlled machines can be generated in a rather straight-forward as well as systematic way.


2018 ◽  
Vol 8 (3) ◽  
pp. 151 ◽  
Author(s):  
AMM Ullah ◽  
Khalifa Harib

This article addresses the issue of educating engineering students with the knowledge and skills of Computer-Aided Design and Manufacturing (CAD/CAM). In particular, three carefully designed tutorials—cutting tool offsetting, tool-path generation for freeform surfaces, and the integration of advanced machine tools (e.g., hexapod-based machine tools) with solid modeling—are described. The tutorials help students gain an in-depth understanding of how the CAD/CAM-relevant hardware devices and software packages work in real-life settings. At the same time, the tutorials help students achieve the following educational outcomes: (1) an ability to apply the knowledge of mathematics, science, and engineering; (2) an ability to design a system, component, or process to meet the desired needs, (3) an ability to identify, formulate, and solve engineering problems; and (4) an ability to use the techniques, skills, and modern engineering tools that are necessary for engineering practice. The tutorials can be modified for incorporating other contemporary issues (e.g., additive manufacturing, reverse engineering, and sustainable manufacturing), which can be delved into as a natural extension of this study.


1983 ◽  
Vol 105 (3) ◽  
pp. 192-199 ◽  
Author(s):  
T. Watanabe ◽  
S. Iwai

Adaptive control to keep the accuracy of the shape of a workpiece within acceptable levels by altering the numerical control commands according to variations of manufacturing process parameters is called “geometric adaptive control.” In this paper, a geometric adaptive control system to compensate for errors in the finished surface due to tool deflection generated by milling operations is presented. The effects of cutting forces upon the shape of the finished surface are analyzed, and the composition of the system is discussed. In the system, the location error and the waviness error at the finished surface are evaluated from the sensed bending moments in the tool. These two errors are compensated for by shifting the tool path and by adjusting the feedrate, respectively. It is verified by experiments that the accuracy of the finished surface is improved significantly by using the system described in cases where the depth of cut varies. Geometric adaptive control is useful even when a workpiece is machined by both rough and finish cuts.


1982 ◽  
Vol 14 (2) ◽  
pp. 112
Author(s):  
S.K. Khurmi ◽  
C.B. Besant ◽  
A. Jebb ◽  
H.A. Pak
Keyword(s):  

2021 ◽  
Vol 1 (2) ◽  
pp. 25-31
Author(s):  
HS Siddesha ◽  
Suhaaskapardhi BS ◽  
Goutham C

Severe Plastic Deformation (SPD) processes are for developing ultrafine grained (UFG) structured materials for different Industrial applications. Cyclic Constrained Groove Pressing (CCGP) is a technique, produce fine grained structures in metallic sheets or plates in mass production. The objective of research work is to investigate the influence of CCGP processing on the super plastic behaviour of an Aluminium alloy. Samples in “ascast” materials processed by CCGP with as cast, 1, 2, 3 and 4 passes. Processed Material study for microhardness and Tensile strength mechanical properties test were done for different test specimens. Grain refinement, microhardness and Tensile strength increased with the number of CCGP passes.


2019 ◽  
Vol 945 ◽  
pp. 556-562
Author(s):  
A.G. Kondrashov ◽  
D.T. Safarov ◽  
R.R. Kazargeldinov

Minimizing energy consumption in the processing of parts on metal-cutting equipment is most effective at the stage of designing the content of operations. Important in this process is the precise determination of the initial parameters - cutting forces. This parameter allows you to plan both energy consumption and perform additional calculations for the deformation of the tooling and workpiece in order to predict the geometric accuracy of the machined part. The article presents the results of experiments on measuring the circumferential cutting force during milling operations of an aluminum alloy workpiece with an end mill. The measurements were carried out by an indirect method - by recording the electrical power on the spindle and then calculating the circumferential cutting force. Theoretical analysis of the methods of calculation of cutting forces showed significant differences between the results obtained by domestic methods and recommendations of world manufacturers of cutting tools. Statistical analysis of the results of calculations based on reference data and measurements made it possible to assess the adequacy of the known methods for calculating cutting forces in order to minimize energy consumption in operations of processing parts on metal-cutting equipment


Sign in / Sign up

Export Citation Format

Share Document