scholarly journals Flow Simulation as a Support to Predict Shape of Plasma Beam Affected by the Nozzle Geometry

2020 ◽  
Vol 328 ◽  
pp. 02008
Author(s):  
Miloslav Málek ◽  
Miloš Mičian ◽  
Augustín Sládek

This paper deals with flow simulation of plasma beam shape affected by the different nozzle geometry. The flow simulations for different nozzles geometry were made in simulation software Ansys-Fluent. The evaluation of flow simulations was based on comparing shapes of the flow media out from the modified nozzle orifice against reference nozzle. There were investigated 8 different modification of nozzle orifice. Modified nozzle n. 7 (in the shape of a Laval nozzle) has achieved significant improvement from all simulated. There were observed 3 cores of plasma beam, which could help blow dross out from cutting gap. Investigated results serve for further research.

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 118
Author(s):  
Kseniia Kuzmina ◽  
Ilia Marchevsky ◽  
Irina Soldatova ◽  
Yulia Izmailova

The possibilities of applying the pure Lagrangian vortex methods of computational fluid dynamics to viscous incompressible flow simulations are considered in relation to various problem formulations. The modification of vortex methods—the Viscous Vortex Domain method—is used which is implemented in the VM2D code developed by the authors. Problems of flow simulation around airfoils with different shapes at various Reynolds numbers are considered: the Blasius problem, the flow around circular cylinders at different Reynolds numbers, the flow around a wing airfoil at the Reynolds numbers 104 and 105, the flow around two closely spaced circular cylinders and the flow around rectangular airfoils with a different chord to the thickness ratio. In addition, the problem of the internal flow modeling in the channel with a backward-facing step is considered. To store the results of the calculations, the POD technique is used, which, in addition, allows one to investigate the structure of the flow and obtain some additional information about the properties of flow regimes.


2013 ◽  
Vol 850-851 ◽  
pp. 355-358
Author(s):  
Dong Du

This paper describes the use of Fluid Flow Simulation Software to model a passenger aircraft engine environmental control system. The analysis simulates the cooling pack and the engine distribution system in a single model.The engine environmental system is very important for engine working efficiently. Using AMEsim software to simulate the cooling system can make it easily and clearly. The influence of the heat component and the fan operating is studied also. Through the analysis of the cooling system, we know that with the help of fan, the system can get additional air in the radiator and make the temperature decrease consequently.


2009 ◽  
Vol 404 ◽  
pp. 61-67 ◽  
Author(s):  
Michael N. Morgan ◽  
V. Baines-Jones

The delivery of grinding fluid to the contact zone is generally achieved via a nozzle. The nozzle geometry influences the fluid velocity and flow pattern on exit from the nozzle orifice. It is important to the efficiency of the process and to the performance of the operation that the fluid is delivered in a manner that ensures the desired jet velocity has adequate coverage of the contact zone. Often, assumptions about adequate coverage are based on visual inspections of the jet coherence. This paper provides new insight into the internal nozzle flows and the coherent length of a wide range of nozzle designs. The work presents a new analytical model to predict coherent length which is shown to correlate well with measured data from experiment. Recommendations are given to guide a user to optimal design of nozzles to ensure adequate fluid supply to the contact zone.


Author(s):  
Yu.V. Grebeneva ◽  
A.Yu. Lutsenko ◽  
A.V. Nazarova

The purpose of the work was to mathematically simulate the flow around the fairing shell of the launch vehicle at a low subsonic free-stream velocity in the α = 0...360° angle-of-attack range. The calculations were performed using the SolidWorks Flow Simulation software package and the open source OpenFoam package based on the use of numerical methods for simulating the motion of liquid and gas. Within the research, we obtained the flow patterns and the aerodynamic coefficients of the longitudinal and normal forces, the pitch moment, and calculated the aerodynamic quality of the shell. Furthermore, we determined the positions of the stable equilibrium of the model and revealed the features of the flowing around the shell of the combined form at flow from the convex and concave sides. Next, we analyzed the leeward lift-off zones and the zones with increased pressure on the windward surface during flow from the concave side. Finally, we compared the obtained characteristics with the experimental data of TsAGI.


2020 ◽  
pp. 45-51
Author(s):  
Pavel Timofeev ◽  
◽  
Vladimir Panchenko ◽  
Sergey Kharchyk ◽  
◽  
...  

This study presents flow simulation over the reentry capsule at supersonic and hypersonic speeds. Numerical algorithms solve for the CFD method, which is produced using help ANSYS Fluent 19.2. The using GPU core to get a solution faster. The main purpose – flow simulation and numerical analysis reentry capsule; understand the behavior of supersonic and hypersonic flow and its effect on the reentry capsule; compare temperature results for the range Mach numbers equals 2–6. This study showed results on velocity counters, on temperature counters and vector of velocity for range Mach numbers equals 2–6. This study demonstrates the importance of understanding the effects of shock waves and illustrates how the shock wave changes as the Mach number increases. For every solves, the mesh had adapted for pressure gradient and velocity gradient to get the exact solution. As a result of the obtained solution, it is found that a curved shock wave appears in front of the reentry capsule. The central part of which is a forward shock. An angular expansion process is observed, which is a modified picture of the Prandtl- Mayer flow that occurs in a supersonic flow near the sharp edge of the expanding region. It is revealed that with an increase in the Mach number, the shock wave approaches the bottom of the reentry capsule, and there is also a slope of the shock to the flow direction, with an increase in the Mach number. The relevance and significance of this problem for the design of new and modernization of old reentry capsules.


Author(s):  
Obai Younis ◽  
Reem Ahmed ◽  
Ali Mohammed Hamdan ◽  
Dania Ahmed

This study aims to optimize the velocity of ring shape parameter for designing the nozzles using computational fluid dynamics (CFD) and investigated the flow in nozzles using ANSYS, Inc. simulation software. The model geometries were defined using ANSYS FLUENT-Design Modeler platform. All nozzles were designed on unstructured triangular elements comprising of 1200000 mesh nodes. The differential governing equations were applied in ANSYS FLUENT based on a finite volume method. The distance and dimensions of ring location significantly influence the velocity of water during flow where the maximum velocity at double rings reduces the surface area at distance of 7mm and 15mm and 2x2 mm dimensions. Considering 8, 10, and 12 bar liner proportions, there was an increase in the velocity at maximum points in ring shapes.


2021 ◽  
Vol 850 (1) ◽  
pp. 012026
Author(s):  
J Kevin Joseph ◽  
R Jeyanthinathan ◽  
R Harish

Abstract A Tesla turbine is a bladeless turbine in which fluid flows in the direction of the centripetal path. It uses fluid properties such as Boundary layer & adhesion of fluid on a series of discs keyed to a shaft. The initial cost and maintenance cost of the Tesla turbine is very low. Our project’s main motive is to improve the performance of a Tesla turbine by changing various parameters such as disc diameter and disc rotating speed through the CFD simulation software using water as a working fluid. The CAD model is designed using Ansys design modeler, meshing is performed using Ansys meshing and post processing is carried out in Ansys fluent. The numerical simulations were carried out using Ansys Fluent which is based on the finite volume method and the changes that occurred in the pressure and velocities are investigated. The parametric study is performed by varying the turbine disc speed. By performing CFD simulations, total pressure contour and velocity magnitude contours are plotted and it is found that pressure and velocity are maximum when the clearance between disc and turbine casing is lesser and at higher turbine disc speeds. The power output of the Tesla turbine is also plotted for various rpm where higher rpm gives maximum power output. The results from the present study would be useful in designing an efficient Tesla turbine with improved performance.


Author(s):  
Juan de Dios Unión-Sánchez ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Manuel Jesús Hervás-Pulido ◽  
Blas Ogáyar-Fernández

Currently, LED technology is an established form of lighting in our cities and homes. Its lighting performance, durability, energy efficiency and light, together with the economic savings that its use implies, are displacing other classic forms of lighting. However, some problems associated with the durability of the equipment related to the problems of thermal dissipation and high temperature have begun to be detected, which end up affecting their luminous intensity and the useful life. There are many studies that show a direct relationship between the low quality of LED lighting and the aging of the equipment or its overheating, observing the depreciation of the intensity of the light and the visual chromaticity performance that can affect the health of users by altering circadian rhythms. On the other hand, the shortened useful life of the luminaires due to thermal stress has a direct impact on the LCA (Life Cycle Analysis) and its environmental impact, which indirectly affects human health. The purpose of this article is to compare the results previously obtained, at different contour temperatures, by theoretical thermal simulation of the 3D model of LED street lighting luminaires through the ANSYS Fluent simulation software. Contrasting these results with the practical results obtained with a thermal imaging camera, the study shows how the phenomenon of thermal dissipation plays a fundamental role in the lighting performance of LED technology. The parameter studied in this work is junction temperature (Tj), and how it can be used to predict the luminous properties in the design phase of luminaires in order to increase their useful life.


2017 ◽  
Vol 10 (1) ◽  
pp. 37-47
Author(s):  
Qingsha Zhou ◽  
Kun Huang ◽  
Yongchun Zhou

Background: The western Sichuan gas field belongs to the low-permeability, tight gas reservoirs, which are characterized by rapid decline in initial production of single-well production, short periods of stable production, and long periods of late-stage, low-pressure, low-yield production. Objective: It is necessary to continue pursuing the optimization of transportation processes. Method: This paper describes research on mixed transportation based on simplified measurements with liquid-based technology and the simulation of multiphase processes using the PIPEPHASE multiphase flow simulation software to determine boundary values for the liquid carrying process. Conclusion: The simulation produced several different recommendations for the production and maximum multiphase distance along with difference in elevation. Field tests were then conducted to determine the suitability of mixed transportation in western Sichuan, so as to ensure smooth progress with fluid metering, optimize the gathering process in order to achieve stable and efficient gas production, and improve the economic benefits of gas field development.


2014 ◽  
Vol 1049-1050 ◽  
pp. 378-382
Author(s):  
Ju Bing Zhang ◽  
Shao Xia Zhang ◽  
Ying Zou

In recent years, the problem of the human-induced bridge vibration has attracted more and more concerns. In this paper , a steel structure footbridge named Shuang'an East in Beijing was taken as the example to collect the whole bridge vibration data and build the finite element model with the finite element software. In addition, this research changes the limitation of considering the pedestrian load as a whole with a traffic flow simulation software, which is based on social force model, applying to reflect the pedestrians' locations during walking. Comparing the simulation data with the the measured data, the vibration serviceability of footbridge will decrease with the increasing of the number of the pedestrians. The analysis results will provide reference for the dynamic characteristic of similar structures.


Sign in / Sign up

Export Citation Format

Share Document