Evolution of microstructure, texture and inhibitor of medium temperature grain-oriented silicon steel

2020 ◽  
Vol 117 (5) ◽  
pp. 510
Author(s):  
Li-Feng Fan ◽  
Xing-Yuan Zhao ◽  
Li-Jun Xiao ◽  
Jiao Huang ◽  
Yuan Xiang Zhang

The medium temperature reheating and two-stage cold rolling process were adopted to produce industrialized Grain-oriented silicon steel. Results showed there were three sections (surface layer, transition layer and central layer) along the thickness direction on hot rolled sheets. Surface layer was occupied by complete recrystallization grains with average grain size 42.81 µm, while the central layer mainly consisted of fibrous microstructure. The Goss texture appeared only on surface layer with content 3.44%∼3.65%. After the first cold rolling with 72% reduction and decarburization annealing, the primary recrystallization occurred and average grains size reached 19.0 µm, simultaneously accompanied with texture rotated to λ, γ fiber texture and Goss texture dropped to 2.89%. Adopting the second cold rolling with 58% reduction, the cold rolled sheet consisted of deformed fiber microstructure and the texture maintained γ fiber texture with a peak at {111} <112>. The precipitates in hot rolled sheets comprised Cu2S and few AlN, and the average particle size was ∼14 nm. The inhibitors in the decarburization annealing sheet were mainly AlN, Cu2S, MnS and their composite precipitation, which were spherical or massive with the average particle size ∼21 nm. The single Goss oriented grains with average grain size 9.41 mm were obtained after high temperature annealing, and the intensity reached 873.30. The final magnetic properties were: B8 = 1.865 T and P1.7/50 = 1.124 W/kg, which met the requirement of 27Q120.

2019 ◽  
Vol 116 (6) ◽  
pp. 604 ◽  
Author(s):  
Lifeng Fan ◽  
Liying Jia ◽  
Rong Zhu ◽  
Jianzhong He

The grain-oriented silicon steel was produced by medium temperature reheating and two-stage cold rolling process, and the microstructure and texture of all metallurgical processes were studied. The results shown that the microstructure of the hot rolled strip was inhomogeneous in thickness direction, the surface layer was the recrystallized microstructures with average grain size of 42.29 µm, the center layer was fiber structure, and the Goss texture appeared at surface. The primary recrystallized microstructure with average grain size of 16 µm was obtained after decarburization annealing, which characterized by a strong γ-fiber texture and a weak Goss texture. The average size of inhibitors in hot rolled strip and decarburization annealed sheet were 9.078 and 21.691 nm respectively, they were mainly compound of nitride and sulfide with spherical or lump shapes. The coarse Goss grains with average size 17.57 mm were got after secondary recrystallization, and the magnetic induction B8 and iron loss P1.7/50 were 1.885 T and 1.10 W/Kg, respectively.


2021 ◽  
Vol 118 (6) ◽  
pp. 604
Author(s):  
Li-Feng Fan ◽  
Mei-Mei Qin ◽  
Xing-Yuan Zhao ◽  
Zheng-Hai Zhu ◽  
Li-Jun Xiao ◽  
...  

The evolution of the microstructure and texture of CSP thin-gauge non-oriented silicon steel was investigated by OM, XRD and EBSD. Results show: (1) the equiaxed surface grains with 28.13 µm average grains size accounted for 19.14% of through-thickness, while deformed band structure dominated the center layer and the other maintained at a composite structure with the first two. With the cold-rolled reduction rate enhancing to 91.15%, the stratification structure transformed into a complete fibrous structure. Annealing from 925 °C to 975 °C, the average grain size of the annealing plate similarly increased, which begins with 67.3 µm and ends at 80.58 µm. (2) The texture of the hot-rolled sheets mainly located at Cube and Goss texture, while with the cold-rolled process executing, the type and volume of texture change and finally stabilize at α fiber texture ({110}//RD) with the peak at {114}<110> at 91.15% reductions rate. The {411}<148> texture on the α* fiber line throughout maintained the strongest texture at different annealing temperatures. (3) The initial re-crystallization temperature is in the range of 600–620 °C, and the re-crystallization is roughly completed at 700 °C. Part of {411}<148> oriented grains nucleated at {411}<148> sub-grains originated from α fiber deformed structure, and the others nucleate at the grains boundaries of the deformed α fiber grains or in the inner of {111}<110> and {111}<112> grains. When the re-crystallization was accomplished at 750 °C, {411}<148> oriented grains are significantly larger than other oriented grains compared to 680 °C or the less. (4) Best magnetic properties were obtained at 975 °C with the B50 = 1.506 T and P10/400 = 16.19 W/kg.


2011 ◽  
Vol 474-476 ◽  
pp. 1711-1714 ◽  
Author(s):  
Panadda Sittiketkron ◽  
Arrak Klinbumrung ◽  
Theerachai Bongkarn

This study investigated the influence of excess Bi2O3 and Na2CO3 on the crystal structure, microstructure and dielectric properties of (Bi0.5Na0.5)TiO3 (BNT) ceramics. The BNT ceramics were synthesized using the solid-state reaction method with various excess Bi2O3 and Na2CO3 levels (0, 1, 2, 3 and 4 mol%). The X-ray characterization revealed that all samples had a rhombohedral structure. A pure perovskite phase was obtained in all samples. The lattice parameter a tended to increase with increased excess Bi2O3 and Na2CO3 content in the calcined powders and sintered ceramics. The average particle size increased while, the average grain size tended to decreased with increased of excess Bi2O3 and Na2CO3 content. The depolarization temperature (Td) and the Curie temperature (Tc) were slightly decreased with the increase of excess Bi2O3 and Na2CO3 content. The dielectric properties were related to the density.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4164 ◽  
Author(s):  
Hongmei Zhang ◽  
Hongnan Li ◽  
Ling Yan ◽  
Chao Wang ◽  
Fangfang Ai ◽  
...  

The microstructure and micro-hardness of tungsten carbide/high strength steel (WC/HSS) composites with different particle sizes were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), ultra-high temperature laser confocal microscopy (UTLCM) and micro-hardness testing. The composites were prepared by cold pressing and vacuum sintering. The results show that WC density tends to increase as the average grain size of WC decreases and the micro-hardness of WC increases with the decrease of WC particle size. The micro-hardness of WC near the bonding interface is higher than that in other regions. When the particle size of WC powder particles is 200 nm, a transition layer with a certain width is formed at the interface between WC and HSS, and the combination between the two materials is metallurgical. The iron element in the HSS matrix diffuses into the WC structure in contact with it, resulting in a fusion layer of a certain width, and the composite interface is relatively well bonded. When the average particle size of WC powder is 200 nm, W, Fe and Co elements significantly diffuse in the transition zone at the interface. With the increase of WC particle size, the trend of element diffusion decreases.


1996 ◽  
Vol 11 (7) ◽  
pp. 1601-1604 ◽  
Author(s):  
Mamoru Mitomo ◽  
Young-Wook Kim ◽  
Hideki Hirotsuru

Ultrafine silicon carbide powder with an average particle size of 90 nm was densified by hot-processing with the addition of Al2O3, Y2O3, and CaO at 1750 °C. Silicon carbide nanoceramics with an average grain size of 110 nm were prepared by liquid phase sintering at low temperature. The materials showed superplastic deformation at a strain rate of 5.0 × 10-4/s at 1700 °C, which is the lowest temperature published. The microstructure and deformation behavior of materials from a submicrometer powder were also investigated as a reference.


2017 ◽  
Vol 898 ◽  
pp. 1693-1698
Author(s):  
Miao Qin Chen ◽  
Jin Jiang He ◽  
Zhao Chong Ding ◽  
Xin He

MgO ceramics with the purity higher than 99.99% have been fabricated by a hot-isostatic press (HIP) technique of hot-pressed MgO compacts using nanometer MgO powder with an average particle size of 300 nm. The densification and grain growth behavior of MgO compacts during HIP process were investigated. The results indicate that the high-purity MgO ceramic with an average grain size of 9.76 μm and a density approximately to the theoretical density can be obtained by HIP method at 1350°C and 150 MPa for 60 min. HIP can significantly enhance the densification process of MgO compacts and cause a slightly change of grain size distribution.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5382
Author(s):  
Congcong Du ◽  
Guoying Liu ◽  
Baoru Sun ◽  
Shengwei Xin ◽  
Tongde Shen

Austenitic stainless steel has high potential as nuclear and engineering materials, but it is often coarse grained and has relatively low yield strength, typically 200–400 MPa. We prepared a bulk nanocrystalline lanthanum-doped 304L austenitic stainless steel alloy by a novel technique that combines mechanical alloying and high-pressure sintering. The achieved alloy has an average grain size of 30 ± 12 nm and contains a high density (~1024 m−3) of lanthanum-enriched nanoprecipitates with an average particle size of approx. 4 nm, leading to strong grain boundary strengthening and dispersion strengthening effects, respectively. The yield strength of nano-grained and nano-precipitated stainless steel reaches 2.9 GPa, which well exceeds that of ultrafine-grained (100–1000 nm) and nano-grained (<100 nm) stainless steels prepared by other techniques developed in recent decades. The strategy to combine nano-grain strengthening and nanoprecipitation strengthening should be generally applicable to developing other ultra-strong metallic alloys.


2016 ◽  
Vol 852 ◽  
pp. 101-104 ◽  
Author(s):  
Wen Qiang Liu ◽  
Cheng Shuai Lei ◽  
Han Mei Tang ◽  
Hong Yu Song ◽  
Hai Tao Liu

The microstructure and texture evolution of the as-cast and hot rolled grain-oriented silicon steel strips was investigated, and the precipitation of the inhibitors of the hot rolled strips was clarified. The results showed that the microstructure of the as-cast strip was characterized by coarse columnar grains with strong {001}<0vw> fiber texture. The microstructure of hot rolled strips was composed of ferrite and pearlite and the microstructure was gradually refined with increasing hot rolling reduction. In the hot rolled strips, α and γ fiber textures were enhanced at the expense of initial {001}<0vw> fiber texture and Goss texture was generated in the surface and sub-surface layer with increasing hot rolling reduction. Besides, a great number of dispersed MnS particles with the size of 20-30nm were observed in the hot rolled strips. These MnS particles could act as the effective inhibitors during the second recrystallization annealing of the grain-oriented silicon steel.


2019 ◽  
Vol 92 ◽  
pp. 06005
Author(s):  
Shintaro Kajiyama ◽  
Yukio Nakata ◽  
Ryota Miyamoto ◽  
Masato Taue

The phenomenon of ground undergoing large plastic deformation, leading to collapse, occurs due to the localization of unstable deformation. The investigation of shear band is important in order to understand the destructive phenomenon. Therefore, a series of experiments were conducted on sands with different particle characteristics so that behaviour of the shear band of sand under plane strain compression could be investigated. Specifically, Toyoura sand and two kinds of coral sand, hereafter referred to as coral sand A (with smaller average particle size) and coral sand B (with larger average particle size) were used. The shear band was evaluated using PIV (Partial Image Velocimetry) analysis. As a result, it became clear that the relationship between shear inclination angle and internal friction angle does not hold for the two kinds of coral sand because the shear inclination angle is low. The ratio of the average value of the shear band width to the average grain size at the peak was 10 to 20 times, 7 to 10 times, and 5 to 8 times in the order of Toyoura sand, coral sand A, and coral sand B. The sample standard deviation was 0.1 to 0.9 mm, 0.9 to 1.6 mm, and 1.4 to 1.9 mm.


2012 ◽  
Vol 538-541 ◽  
pp. 1183-1186
Author(s):  
Min Li ◽  
Lan Rong Cai ◽  
Peng Xin Liu

In this paper, effects of partial remelting treatment on microstructure and properties of ZL205A alloy were studied in detail. The results show that the grain size of ZL205A alloy decreases at different degree. The grain size increases first and then decreases with increasing of returns content. The average grain size of the primary ZL205A alloy was measured to be about 60 μm, and the good result can be got of the ZL205A alloys with the average particle size of α (Al) phase being about 33 μm after adding 20wt.% returns. The ZL205A alloy with 20 wt.% returns has a considerably high tensile strength and yield strength of 525MPa and 445 MPa, respectively, which is much higher than 501 MPa and 421 MPa of primary ZL205A alloy, meanwhile the elongation level is up to14%.


Sign in / Sign up

Export Citation Format

Share Document