scholarly journals Pediatric Sepsis: Clinical Markers

2017 ◽  
Vol 07 (01) ◽  
pp. e42-e53
Author(s):  
S. Szima ◽  
G. Balazs ◽  
N. Elek ◽  
P. Dahlem

AbstractPediatric sepsis can be caused by infection agents such as viruses, bacteria, protozoa, or their toxins. Clinical features cover a remarkably wide spectrum. Early recognition of the disease and prompt initiation of therapy substantially improve mortality and the outcome of potential complications. After an initial phase of very mild symptoms, the spread of microbes or toxins in the bloodstream presents as septic shock through vasoregulatory disturbance, absolute or relative intravascular volume loss, and consequential tachycardia and hypotension. The most common accompanying symptom is fever. In physical examination, features such as altered mental status, excess respiratory effort, tachycardia, and prolonged capillary refill time are present at an early stage of the disease. Laboratory tests for the assessment of early stage severity and subsequent monitoring of treatment efficacy include point-of-care arterial blood gas analysis and lactate assay. In early stage disease, it is imperative to promptly start adequate antimicrobial and supportive treatment once bacterial cultures have been taken. Despite the availability of a wide range of laboratory and imaging tests today, diagnosis and severity assessment of sepsis still primarily rely on medical history and clinical examination. In light of this, it is possible for trained care providers to detect the early signs of a septic child during repetitive physical examinations. This is still the mainstay of diagnosis and can provide in all care settings a significant reduction in therapeutic delay; this, in turn, helps to reduce sepsis-related mortality and morbidity.

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Da-Quan Yang ◽  
Bing Duan ◽  
Xiao Liu ◽  
Ai-Qiang Wang ◽  
Xiao-Gang Li ◽  
...  

The ability to detect nanoscale objects is particular crucial for a wide range of applications, such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability, etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing and other functionalities.


Author(s):  
Stephan Stilgenbauer ◽  
Richard R. Furman ◽  
Clive S. Zent

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is usually diagnosed in asymptomatic patients with early-stage disease. The standard management approach is careful observation, irrespective of risk factors unless patients meet the International Workshop on CLL (IWCLL) criteria for “active disease,” which requires treatment. The initial standard therapy for most patients combines an anti-CD20 antibody (such as rituximab, ofatumumab, or obinutuzumab) with chemotherapy (fludarabine/cyclophosphamide [FC], bendamustine, or chlorambucil) depending on multiple factors including the physical fitness of the patient. However, patients with very high-risk CLL because of a 17p13 deletion (17p-) with or without mutation of TP53 (17p-/ TP53mut) have poor responses to chemoimmunotherapy and require alternative treatment regimens containing B-cell receptor (BCR) signaling pathway inhibitors. The BCR signaling pathway inhibitors (ibrutinib targeting Bruton's tyrosine kinase [BTK] and idelalisib targeting phosphatidyl-inositol 3-kinase delta [PI3K-delta], respectively) are currently approved for the treatment of relapsed/refractory CLL and all patients with 17p- (ibrutinib), and in combination with rituximab for relapsed/refractory patients (idelalisib). These agents offer great efficacy, even in chemotherapy refractory CLL, with increased tolerability, safety, and survival. Ongoing studies aim to determine the best therapy combinations with the goal of achieving long-term disease control and the possibility of developing a curative regimen for some patients. CLL is associated with a wide range of infectious, autoimmune, and malignant complications. These complications result in considerable morbidity and mortality that can be minimized by early detection and aggressive management. This active monitoring requires ongoing patient education, provider vigilance, and a team approach to patient care.


1994 ◽  
Vol 9 (4) ◽  
pp. 231-238 ◽  
Author(s):  
M. Correale ◽  
H. Arnberg ◽  
P. Blockx ◽  
E. Bombardieri ◽  
M. Castelli ◽  
...  

Our preliminary evaluation of a new monoclonal antibody-based assay for tissue polypeptide antigen (TPA) has shown it to be clinically equivalent to the polyclonal antibody-based assay for TPA. The new assay (TPA-M) employs three monoclonal antibodies to epitopes on cytokeratins 8, 18 and 19. This multicenter, multinational study included 266 patients with newly diagnosed carcinomas of the lung, breast, large bowel and urinary bladder. TPA values from the two assays were compared with three other cytokeratin markers (TPS, CYFRA 21–1 and TPACyk) and with the established reference markers for these malignancies (CEA and NSE for lung, CA 15–3 for breast, CEA and CA 19–9 for colorectal tumors). Analysis of receiver operating characteristic (ROC) curves in lung, colorectal and bladder cancer showed similar sensitivities for the two assays, ranging from 50% to 80% with a specificity of 95%. In breast cancer all the markers studied showed poor sensitivity. However, TPA determination by either method could discriminate advanced stage (stages III and IV) from early stage disease (stages 0 to II). TPA showed similar discriminating ability in bladder cancer. On the basis of the results obtained in our patient series, it seems that of the cytokeratin markers studied, TPA and TPA-M are the most sensitive and offer a wide range of clinical applications.


Author(s):  
Daren Briscoe

Respiratory conditions are a common complication for the acutely ill patient. Early recognition of the onset of a respiratory crisis is fundamental to prevent further deterioration of the acutely ill patient. This chapter provides a discussion of the respiratory system and the physiological mechanisms which control respiratory function with a useful overview of common respiratory symptoms. The principles of arterial blood gas analysis, respiratory support mechanisms, and tracheostomy care precedes a discussion of three commonly encountered respiratory disorders; asthma, COPD, and pneumonia, with focus upon nursing and medical support to support patients with these acute illnesses. A large proportion of emergency admissions to acute care wards are due to these diseases and thus a good understanding of the assessment and management of these conditions is essential.


2015 ◽  
Vol 33 (Suppl. 2) ◽  
pp. 115-117 ◽  
Author(s):  
Raoul Poupon

PBC (formerly known as primary biliary cirrhosis and now named primary biliary cholangitis) is a disease with a wide range of severity and variable rate of progression. The diagnosis of advanced liver fibrosis/cirrhosis portends an increased risk of liver-related morbidity and mortality. Because of its invasiveness, liver biopsy tends to be replaced by non-invasive tools for assessing liver fibrosis, making prognosis and optimising risk stratification for selection of patients, requiring new medical approaches. Many direct or indirect biomarkers have been found to correlate with the severity of liver fibrosis in PBC. They are easy to use but lack sensitivity and reproducibility in individuals with early stage disease. Three main radiologic approaches are currently proposed to assess liver fibrosis: vibration controlled transient elastography (VCTE), acoustic radiation force impulse and magnetic resonance elastography. Data using VCTE are available only for the longitudinal evaluation of liver fibrosis and prognosis in PBC. VCTE outperformed all other non-invasive current surrogate markers of liver fibrosis in PBC. Because of its high acceptability and its ability to predict hepatic decompensation, VCTE could be a useful tool to help allocate cirrhotic patients into different categories of risk. None of the radiologic and serum markers have a perfect accuracy in studies so far published. Concordance between VCTE and serum biomarkers is a prerequisite for a correct prognosis assessment in individuals in clinical practice.


2020 ◽  
Author(s):  
Erez Shor ◽  
Pedro Herrero-Vidal ◽  
Adam Dewan ◽  
Ilke Uguz ◽  
Vincenzo F. Curto ◽  
...  

AbstractWhen it comes to simultaneous versatility, speed, and specificity in detecting volatile chemicals, biological olfactory systems far outperform all artificial chemical detection devices. Consequently, the use of trained animals for chemical detection in security, defense, healthcare, agriculture, and other applications has grown astronomically. However, the use of animals in this capacity requires extensive training and behavior-based communication. Here we propose an alternative strategy, a bio-electronic nose, that capitalizes on the superior capability of the mammalian olfactory system, but bypasses behavioral output by reading olfactory information directly from the brain. We engineered a brain-machine interface that captures neuronal signals from an early stage of olfactory processing in awake mice, and used machine learning techniques to form a sensitive and selective chemical detector. We chronically implanted a grid electrode array on the surface of the mouse olfactory bulb and systematically recorded responses to a large battery of odorants and odorant mixtures across a wide range of concentrations. The bio-electronic nose has a comparable sensitivity to the trained animal and can detect odors on a variable background. We also introduce a novel genetic engineering approach designed to improve the sensitivity of our bio-electronic nose for specific chemical targets. Our bio-electronic nose outperforms current detection methods and unlocks a wide spectrum of civil, medical and environmental applications.


Author(s):  
S. A. Sadovnikov

Introduction: Successful monitoring of environmental parameters requires the development of flexible software complexes with evolvable calculation functionality. Purpose: Developing a modular system for numerical simulation of atmospheric laser gas analysis. Results: Based on differential absorption method, a software system has been developed which provides the calculation of molecular absorption cross-sections, molecular absorption coefficients, atmospheric transmission spectra, and lidar signals. Absorption line contours are calculated using the Voigt profile. The prior information sources are HITRAN spectroscopic databases and statistical models of the distribution of temperature, pressure and gas components in the atmosphere. For modeling lidar signals, software blocks of calculating the molecular scattering coefficient and aerosol absorption/scattering coefficients were developed. For testing the applicability of various laser sources in the problems of environmental monitoring of the atmosphere, a concentration reconstruction error calculation block was developed for the atmospheric gas components, ignoring the interfering absorption of laser radiation by foreign gases. To verify the correct functioning of the software, a program block was developed for comparing the results of the modeling of atmospheric absorption and transmission spectra by using the standard SPECTRA information system. The discrepancy between the calculation of the atmospheric transmission spectra obtained using the developed system as compared to the SPECTRA results is less than 1%. Thus, a set of the presented program blocks allows you to carry out complex modeling of remote atmospheric gas analysis. Practical relevance: The software complex allows you to rapidly assess the possibilities of using a wide range of laser radiation sources for the problems of remote gas analysis.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


2012 ◽  
Vol 109 ◽  
pp. 1-7 ◽  
Author(s):  
Michael Marberger ◽  
Jelle Barentsz ◽  
Mark Emberton ◽  
Jonas Hugosson ◽  
Stacy Loeb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document