Q Fever (Coxiella Burnetii)

2020 ◽  
Vol 41 (04) ◽  
pp. 509-521
Author(s):  
Pedro Pablo España ◽  
Ane Uranga ◽  
Catia Cillóniz ◽  
Antoni Torres

AbstractQ fever is a zoonotic infectious disease caused by the Coxiella burnetii bacterium. It is an obligate intracellular pathogen with a high infection capacity that proliferates exclusively in an acidified medium, forming a lysosome-like vacuole. It presents a peculiar phenomenon called “antigenic phase variation,” produced by a modification in the complexity of the membrane lipopolysaccharides. Q fever can be found worldwide and presents variable clinical features and geographical distribution. It mostly affects people in rural areas who are in contact with animals. The most common type of transmission to humans is via the inhalation of aerosols containing the pathogen, especially those formed from placental derivatives. Wild animals, domestic animals, and ticks are the principal reservoirs.Diagnosis is mainly made by indirect methods such as serology or by direct methods such as microbiological cultures or tests that detect the specific DNA. Typically, there are two clinical presentations: the acute disease, which is more frequent and often asymptomatic, and a persistent focalized infection in 4 to 5% of patients, generally with a poor evolution. Treatment of the acute form in both children and adults consists of administering doxycycline, while persistent focalized infection should be treated with at least two antibiotics, such as doxycycline and hydroxychloroquine. Several measures should be undertaken to minimize exposure among people working with animals or handling birth products. Different vaccines have been developed to prevent infection, though few data are available.

2019 ◽  
Author(s):  
Jun Ni ◽  
Hanliang Lin ◽  
Xiaofeng Xu ◽  
Qiaoyun Ren ◽  
Malike Aizezi ◽  
...  

Abstract Background The gram-negative Coxiella burnetii bacterium is the pathogen that causes Q fever. The bacterium is transmitted to animals via ticks and can cause infection in domestic animals, wild animals, and humans. As the provincial-level administrative region with the largest land area in China, Xinjiang has many endemic tick species; however, the distribution of C. burnetii in ticks in Xinjiang border areas has not been studied in detail.Results For the current study, 1507 ticks were collected from livestock at 22 sampling sites in ten border regions of the Xinjiang Uygur Autonomous region from 2018 to 2019. C. burnetii was detected in 205/348 (58.91%) Dermacentor nuttalli ; in 110/146 (75.34%) Dermacentor pavlovskyi ; in 66/80 (82.50%) Dermacentor silvarum ; in 15/32 (46.90%) Dermacentor niveus ; in 28/132 (21.21%) Hyalomma rufipes ; in 24/25 (96.00%) Hyalomma anatolicum ; in 219/312 (70.19%) Hyalomma asiaticum ; in 252/338 (74.56%) Rhipicephalus sanguineus ; and in 54/92 (58.70%) Haemaphysalis punctata . Among these samples, C. burnetii was detected in D. pavlovskyi for the first time. The infection rate of R. sanguineus was 74.56% (252/338), which was the highest among the four tick genera sampled, whereas the infection rate of H. anatolicum was 96% (24/25), which was the highest among the nine tick species sampled. A sequence analysis indicated that 63 16S rRNA sequences could be found in four newly established genotypes: CXJ-1 (n = 18), CXJ-2 (n = 33), CXJ-3 (n = 6), and CXJ-4 (n = 6).Conclusions This study indicates that CXJ-2 might represent the main C. burnetii genotype in the ticks in Xinjiang because it was detected in eight of the tick species studied. The high infection rate of C. burnetii detected in the ticks found in domestic animals may indicate a high likelihood of Q fever infection in both domestic animals and humans.


2007 ◽  
Vol 75 (11) ◽  
pp. 5282-5289 ◽  
Author(s):  
Anja Lührmann ◽  
Craig R. Roy

ABSTRACT Coxiella burnetii is an obligate intracellular pathogen and the etiological agent of the human disease Q fever. C. burnetii infects mammalian cells and then remodels the membrane-bound compartment in which it resides into a unique lysosome-derived organelle that supports bacterial multiplication. To gain insight into the mechanisms by which C. burnetii is able to multiply intracellularly, we examined the ability of host cells to respond to signals that normally induce apoptosis. Our data show that mammalian cells infected with C. burnetii are resistant to apoptosis induced by staurosporine and UV light. C. burnetii infection prevented caspase 3/7 activation and limited fragmentation of the host cell nucleus in response to agonists that induce apoptosis. Inhibition of bacterial protein synthesis reduced the antiapoptotic effect that C. burnetii exerted on infected host cells. Inhibition of apoptosis in C. burnetii-infected cells did not correlate with the degradation of proapoptotic BH3-only proteins involved in activation of the intrinsic cell death pathway; however, cytochrome c release from mitochondria was diminished in cells infected with C. burnetii upon induction of apoptosis. These data indicate that C. burnetii can interfere with the intrinsic cell death pathway during infection by producing proteins that either directly or indirectly prevent release of cytochrome c from mitochondria. It is likely that inhibition of apoptosis by C. burnetii represents an important virulence property that allows this obligate intracellular pathogen to maintain host cell viability despite inducing stress that would normally activate the intrinsic death pathway.


2018 ◽  
Vol 55 (4) ◽  
pp. 539-542 ◽  
Author(s):  
Davide De Biase ◽  
Alessandro Costagliola ◽  
Fabio Del Piero ◽  
Rossella Di Palo ◽  
Domenico Coronati ◽  
...  

Coxiella burnetii is an obligate intracellular pathogen and the cause of Q fever in many animal species and humans. Several studies have reported the association between C. burnetii and abortion, premature delivery, stillbirth, and weak offspring. However, no solid evidence indicates that C. burnetii causes endometritis, subfertility, and retained fetal membranes. For this study, histopathological and PCR evaluation were performed on 40 uterine biopsies from dairy cattle with poor fertility. Uterine swabs were concurrently tested with microbiology assays. The endometrial biopsies of 30 cows did not have any significant lesions, and no pathogens were identified by aerobic bacterial culture and PCR. Ten cows were PCR-positive for C. burnetii and negative for other pathogens by aerobic bacterial culture and PCR. These 10 cases revealed a mild to severe chronic endometritis admixed with perivascular and periglandular fibrosis. Immunohistochemical evaluation of C. burnetii PCR-positive biopsies identified, for the first time, the presence of intralesional and intracytoplasmic C. burnetii in macrophages in the endometrium of cattle.


2020 ◽  
Vol 36 (3) ◽  
pp. 359-369
Author(s):  
Jadranka Zutic ◽  
Dragica Vojinovic ◽  
Slobodan Stanojevic ◽  
Branislav Kureljusic ◽  
Vesna Milicevic ◽  
...  

Q-fever is antropozoonosis which is caused by Coxiella burnetii, obligate intracellular pathogen. The most significant characteristics of this pathogen are resistance and stability in the environment, possibility of aerosol dissemination, and very low infective dose. C. burnetii can infect domestic and wild animals, rodents, birds and ticks. Q fever in animals is generally asymptomatic, although it can lead to reproductive disorders during pregnancy. The main route of infection in humans is inhalation of contaminated aerosol and dust. Serological studies have shown the presence of antibodies to C. burnetii in the serum samples of cattle in Belgrade epizootiological area. Seroprevalence of 18% was found in farm bred cattle, while it was only 1.5% in individual breeding. In farm bred cows that have suffered abortion prevalence was 49%, and only 1.9% in individual breeding. The overall results indicate that the circulation of this pathogen in cattle, in Belgrade epizootiological area, poses a health risk, not only to the cattle, but also to the humans, especially persons working with animals. Q fever control programs most often recommend serological research and vaccination of animals. Accordingly, it is necessary to define a strategy for the implementation of biosecurity measures and preventive measures against Q fever.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1337
Author(s):  
Jeong-Rae Yoo ◽  
Mi-Sun Kim ◽  
Sang-Taek Heo ◽  
Hyun-Joo Oh ◽  
Jung-Hwan Oh ◽  
...  

Coxiella burnetii infects humans and wild and domesticated animals. Although reported cases on Jeju Island, off the coast of South Korea, are rare, the region is considered to have a high potential for Q fever. We investigated the seroprevalence of antibodies to C. burnetii in 230 farmers living in ten rural areas on Jeju Island between January 2015 and December 2019. Blood samples were collected and examined for C. burnetii Phase I/II IgM and IgG antibodies. Trained researchers collected ticks from rural areas. Clone XCP-1 16S ribosomal RNA gene sequencing was performed to identify Coxiella species from the collected ticks. The overall seroprevalence of antibodies to C. burnetii in farmers was 35.7%. The seroprevalence was significantly higher in fruit farmers. Of the collected ticks, 5.4% (19/351) of the Haemaphysalis longicornis ticks harbored C. burnetti. A high seroprevalence of antibodies to C. burnetii was observed in this region of Jeju Island, confirming that C. burnetti is endemic. Physicians should thus consider Q fever in the differential diagnosis of patients that present with acute fever after participating in outdoor activities.


2018 ◽  
Vol 68 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Danica Bogunović ◽  
Nataša Stević ◽  
Karim Sidi-Boumedine ◽  
Dušan Mišić ◽  
Snežana Tomanović ◽  
...  

Abstract Q fever is a zoonotic disease caused by Coxiella burnetii, a gram-negative coccobacillus, which has been detected in a wide range of animal species, mostly domestic ruminants, but also in wild mammals, pets, birds, reptiles, arthropods (especially ticks), as well as in humans. Although the exposure to domestic animals in rural areas is regarded as the most common cause of the disease in humans, recent studies have shown that the role of pets in the epidemiology of Q fever has been increasingly growing. Although the primary route of infection is inhalation, it is presumed that among animals the infection circulates through ticks and that they are responsible for heterospecifi c transmission, as well as spatial dispersion among vertebrates. The aim of this study was to determine the presence and prevalence of C. burnetii in ticks removed from stray dogs, as well as to examine the distribution of tick species parasitizing dogs on the territory of Belgrade city. A PCR protocol targeting IS1111 repetitive transposon-like region of C. burnetii was used for the detection of C. burnetii DNA in ticks and the results were confi rmed by sequence analysis. In total, 316 ticks were collected from 51 stray dogs - 40 females (78.43%) and 11 males (21.57%). Three species of ticks were identifi ed: Rhipicephalus s anguineus (72.15%), Ixodes ricinus (27.53%) and Dermacentor reticulatus (0.32%). Out of 316 examined ticks, C. burnetii DNA was detected only in the brown dog tick R. sanguineus, with a total prevalence of 10.53% (24/228) . The high prevalence of C. burnetii in R. sanguineus, which is primarily a dog tick, indicates the importance of dogs in the epidemiology of Q fever in the territory of Belgrade.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Carrie M. Long ◽  
Paul A. Beare ◽  
Diane C. Cockrell ◽  
Jonathan Fintzi ◽  
Mahelat Tesfamariam ◽  
...  

AbstractCoxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.


Author(s):  
Loïc Epelboin ◽  
Carole Eldin ◽  
Pauline Thill ◽  
Vincent Pommier de Santi ◽  
Philippe Abboud ◽  
...  

Abstract Purpose of Review In this review, we report on the state of knowledge about human Q fever in Brazil and on the Guiana Shield, an Amazonian region located in northeastern South America. There is a contrast between French Guiana, where the incidence of this disease is the highest in the world, and other countries where this disease is practically non-existent. Recent Findings Recent findings are essentially in French Guiana where a unique strain MST17 has been identified; it is probably more virulent than those usually found with a particularly marked pulmonary tropism, a mysterious animal reservoir, a geographical distribution that raises questions. Summary Q fever is a bacterial zoonosis due to Coxiella burnetii that has been reported worldwide. On the Guiana Shield, a region mostly covered by Amazonian forest, which encompasses the Venezuelan State of Bolivar, Guyana, Suriname, French Guiana, and the Brazilian State of Amapá, the situation is very heterogeneous. While French Guiana is the region reporting the highest incidence of this disease in the world, with a single infecting clone (MST 117) and a unique epidemiological cycle, it has hardly ever been reported in other countries in the region. This absence of cases raises many questions and is probably due to massive under-diagnosis. Studies should estimate comprehensively the true burden of this disease in the region.


2012 ◽  
Vol 80 (6) ◽  
pp. 1980-1986 ◽  
Author(s):  
Laura J. MacDonald ◽  
Richard C. Kurten ◽  
Daniel E. Voth

ABSTRACTCoxiella burnetiiis the bacterial agent of human Q fever, an acute, flu-like illness that can present as chronic endocarditis in immunocompromised individuals. Following aerosol-mediated transmission,C. burnetiireplicates in alveolar macrophages in a unique phagolysosome-like parasitophorous vacuole (PV) required for survival. The mechanisms ofC. burnetiiintracellular survival are poorly defined and a recent Q fever outbreak in the Netherlands emphasizes the need for better understanding this unique host-pathogen interaction. We recently demonstrated that inhibition of host cyclic AMP-dependent protein kinase (PKA) activity negatively impacts PV formation. In the current study, we confirmed PKA involvement in PV biogenesis and probed the role of PKA signaling duringC. burnetiiinfection of macrophages. Using PKA-specific inhibitors, we found the kinase was needed for biogenesis of prototypical PV andC. burnetiireplication. PKA and downstream targets were differentially phosphorylated throughout infection, suggesting prolonged regulation of the pathway. Importantly, the pathogen actively triggered PKA activation, which was also required for PV formation by virulentC. burnetiiisolates during infection of primary human alveolar macrophages. A subset of PKA-specific substrates were differentially phosphorylated duringC. burnetiiinfection, suggesting the pathogen uses PKA signaling to control distinct host cell responses. Collectively, the current results suggest a versatile role for PKA inC. burnetiiinfection and indicate virulent organisms usurp host kinase cascades for efficient intracellular growth.


Sign in / Sign up

Export Citation Format

Share Document